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Abstract 

We propose a new overlay network, called Generic 
Identifier Network (GIN), for collaborative nodes to 
share objects with transactions across affiliated 
organizations by merging the organizational local 
namespaces upon mutual agreement. Using local 
namespaces instead of a global namespace can avoid 
excessive dissemination of organizational information, 
reduce maintenance costs, and improve robustness 
against external security attacks. GIN can forward a 
query with an 

�
(1) latency stretch with high 

probability and achieve high performance. In the 
absence of a complete distance map, its heuristic 
algorithms for self configuration are scalable and 
efficient. Routing tables are maintained using soft-state 
mechanisms for fault tolerance and adapting to 
performance updates of network distances. Thus, GIN 
has significant new advantages for building an efficient 
and scalable Distributed Hash Table for modern 
collaborative applications across organizations. 

1. Introduction 

Modern middleware, such as Web Services [4], 
CORBA [15] and DCOM [12], facilitates remote 
object access, where collaborative nodes can make a 
remote procedure call for accessing an object (also 
known as web resource or service) installed at each 
other as easily as accessing a locally installed object. 
Those nodes are typically installed in clusters each of 
which represents an organization, e.g. business 
corporations, governments, special-purpose/interest 
communities, regions of online multiplayer games, and 
peer-to-peer (P2P) file-sharing systems [6][7][14][24]. 
An organization is autonomous for managing its node 
and object installation including location and 
replication, for high performance, fault tolerance, 
security, authorization, etc. Despite the autonomy, a 
node collaborating with other nodes in a decentralized 
transaction—e.g. by Web Service Choreography [5], or 
Business Process Execution Language (BPEL) [1]—

may need to access objects outside its organization. 
Thus, upon demands from the current applications, an 
organization is affiliated with some other organizations 
such that a node in it can remotely access objects in its 
affiliates. However, as those application demands are 
transient, e.g. regulated by mutually agreed policies or 
contracts [25], the on-demand affiliating between their 
organizations will not be persistent. In addition, objects 
can have mobile locations due to dynamic authoring, 
caching, or replicating. Thus, we are focused on how to 
facilitate remote access to mobile and transient objects 
in dynamically affiliated organizations, with a scalable 
and efficient query-forwarding algorithm. 

We assume that each object is assigned a character 
string as its “name” that is the key for a querying node 
to find the object on the network. Thus, a namespace 
for all available objects in the affiliated organizations 
should be maintained, where the object names are only 
significant locally in those affiliates. This is different 
from using a global name service that assigns each 
object, for example, a Uniform Resource Identifier 
(URI) [3], which is either a Uniform Resource Locator 
(URL) or Name (URN). Using a URL tightly binds the 
object access point to the hostname written in the URL, 
while using a URN avoids such binding but requires a 
namespace identifier that must be globally unique. 
Both the URL and URN schemes need Domain Name 
System (DNS) to retrieve the IP addresses of the URL 
hostnames, and the dedicated URN name resolvers for 
a namespace identifier, respectively. Unfortunately, as 
recently reported in [16], the currently deployed DNS 
servers have severe load-imbalance, resulting in poor 
performance and scalability. Caching among the DNS 
servers also has low coherency upon updates [17]. To 
address these problems, it has recently been advocated 
that a global name service should be implemented 
using the emergent Distributed Hash Table (DHT) 
approaches [8][10][20][22][23], which initially aimed 
at supporting P2P file-sharing systems on large scales. 
For example, CoDoNS [21] was proposed as a DNS 
implementation using Beehive [20], which is a DHT 
with proactive caching. A four-layer Internet naming 
architecture [2] was proposed using DHT technologies 
to allow objects to have a globally unique and flat 
name. These global name services can provide high † The work was previously finished in Computer Science Department 
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performance and scalability in answering queries based 
on DHTs. 

However, deploying a global name service for local 
objects in a set of affiliated organizations has several 
drawbacks. First, it excessively disseminates the name 
registrations across orthogonal namespaces each of 
which belongs to a set of affiliated organizations where 
nodes never access external objects. This excessive 
dissemination results in high overhead for maintaining 
the namespace, and violates the privacy policies that, 
typical in practice, disallow unnecessary information 
leakage. Second, subscribers to a global name service 
are often required to pay fees for service maintenance 
and management, while self-installing a local name 
service makes economy. Third, it is more difficult to 
generate an object name with global uniqueness, and is 
unnecessary when local uniqueness suffices. Finally, 
relying on a global name service poses security threats 
to those organizations when the global name service is 
vulnerable to attacks. 

Thus, we argue that an organization should instead 
employ a local name service for addressing its internal 
objects for its own applications, and that if multiple 
organizations are affiliated, their local name services 
should accordingly become merged to reflect a mutual 

agreement for sharing objects, while the autonomy for 
managing internal objects is preserved at all times. To 
provide scalability and efficiency, we also advocate 
that a local name service be implemented in a DHT 
approach. However, in addition to those functions for 
supporting P2P systems, our approach—called Generic 
Identifier Network (GIN)—supports dynamic creation 
and removal of admin links for affiliation-relationships. 
In general, an admin link connecting two nodes shows 
that the two nodes participate in the same namespace. 
Thus, admin links are used to connect nodes inside an 
organization for clustering as well as nodes in different 
organizations for affiliating. 

For example, referring to Figure 1, there are 3 sets 
of affiliated organizations. Although it is typical for an 
organization to reside within one local area network 
(LAN), two or more organizations may coexist in one 
LAN, either affiliated or not, while one organization 
may have its nodes distributed in multiple LANs with 
admin links connecting those nodes. Therefore, the 
topology of the admin links in a GIN does not reveal 
which node belongs to which organization, though an 
admin link can be annotated with a high link-cost if 
affiliating two organizations. Note that the admin links 
in GIN are allowed to form a loop, e.g. a-b-c-d-e-a, for 
fault tolerance and ease of maintenance. 

Based on the created admin links, GIN dynamically 
create some other overlay links to facilitate locating an 
object by its object name. Like other DHT approaches, 
a predefined hash function is deployed to generate a 
fixed-length Object Identifier (OID) from each object 
name such that an OID has a pseudo-random numeric 
value. Then, an object registers its OID at its hosting 
node so that an application process (AP) can use any 
node in the same namespace to send a query for it by 
specifying its OID. Objects can be mobile since object 
names and OIDs need not contain any information for 
the hosting nodes’ network addresses. 

For example, referring to Figure 2, an object X is 
registered at a node y by an Insert command so that y 
acquires explicit access to X, which can be exercised 
on behalf of a local or remote AP—y can update or 
retrieve the contents of X, trigger some actions on X, or 
simply deliver an event or a message to X. Then, node 
y is called the host of object X, and is denoted by 
host(X). The OID of X is denoted by id(X). In GIN, an 
object X is allowed to have multiple replicas that share 
the same OID, i.e. id(X), registered at different hosts. A 
query for id(X) from the issuer, i.e. the node issuing the 
query on behalf of a querying AP, is sent to one of the 
hosts of X, and the query is likely to be received by the 
host nearest to the issuer. 

Our approach shares many desirable properties with 
other DHT proposals. Suppose a namespace involves n 
nodes and 

�
(n) objects where a node has 

�
(1) admin 
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links. Then, the average routing table size is 
�

(log n) 
per node with high probability, which is scalable. Since 
the overlay links in GIN are built with the awareness of 
node locations, like Tapestry [8] and Pastry [23], it can 
provide a latency stretch as low as 

�
(1) in forwarding a 

query with high probability. Its overlay network is self-
configurable, and resilient with soft-state techniques. 

 Nonetheless, unlike other DHT proposals, GIN can 
dynamically adapt to the performance updates of those 
link-costs that are typically dependent on the end-to-
end transmission delays between nodes. In addition, 
two GINs with n1 and n2 nodes (n1 ≤ n2), and 

�
(n1) and 

�
(n2) objects, respectively, will merge by 

�
(n1 log n2) 

messages if n1 << n2, or 
�

(n1) otherwise, on average 
with high probability. This implies that inserting a new 
node into a GIN with n nodes takes 

�
(log n) messages 

only. Partitioning a GIN and removing a node require 
similar numbers of messages to those for merging two 
GINs and inserting a node, respectively. 

2. GIN Infrastructure 

Each node, say u, is assigned a random but unique 
Node Identifier (NID), denoted by id(u). The OID and 
the NID share the same format with a fixed number of 
bits, e.g. 128 bits. NID’s and OID’s are all considered 
pseudo random, typically generated by a hash function 
that takes as input the text string of the node or object 
name, properties, or contents, and outputs a hash code 
equally likely to be any in the range of possible values. 

A node can send and receive messages to and from 
any other node through an underlying network. The 
underlying network defines a set of network addresses, 
assigns each node a unique network address, and is 
capable of delivering a message from any node to any 
other node that is identified by its underlying network 
address. (We write “address,” “network address,” and 
“underlying network address,” interchangeably.) The 
underlying network is typically a transport-layer data 
transmission service, e.g., TCP. Thus, the node address 
in GIN can be a combination of its IP address and TCP 
port number for the TCP socket. GIN identifies a node 
by its node address and uses a node address to refer to 
any remote node. When the context is clear, we simply 

write the address of a node x as x. 
The routing tables at those GIN nodes contain two 

data structures: links, and object pointers. An object 
pointer [OID, host] means that an object with that OID 
has been registered at that host. In this section, we will 
describe how to use the data structures to find an object 
with a specified OID, and how to maintain these data 
structures dynamically. 

2.1. Basics 

Both the OID and the NID have l × b bits, where b 
is a small integer and l is the number of levels. Assume 
that l = Ω (log n) where n is the total number of nodes, 
e.g., b = 4 and l = 32. Both the OID and the NID have l 
× b bits. 

Refer to Figure 3. For each level k = 1, 2, … l, we 
define the digit of an ID (either an OID or a NID) to be 
the number represented in binary by those b bits from 
bit (k – 1) × b to bit k × b – 1, where the bits are 
indexed in order from left to right, starting with 0. This 
digit is the “routing goal” at level k, and is denoted by 
g(φ, k) for an identifier φ. Note that g(id(x), k) is briefly 
written as g(x, k) for a node x, and g(id(X), k) as g(X, k) 
for an object X. 

We define the prefix of an identifier φ at a level k to 
be the ordered sequence of the first k – 1 digits of φ, 
which is denoted by p(φ, k). Similarly, p(x, k) = p(id(x), 
k) for a node x, and p(X, k) = p(id(X), k) for an object X. 
Note that p(φ, 1) is always a null prefix, denoted by ε, 
that contains no digit, and p(φ, l + 1) = φ, for 
convenience. For an identifier θ, when p(θ, k) = p(φ, k), 
we say that θ matches p(φ, k). Clearly, all identifiers 
match ε at level 1, while a node x is the only node with 
an NID matching p(x, l + 1). In addition, for a prefix α 
at level k and for a digit δ, we write αδ to refer to the 
prefix at level k + 1 such that the first k – 1 digits are α 
and the k-th digit is δ. 

For a level-k prefix α, we define the class of α (also 
called the α-class) as the set of all those nodes with an 
NID matching α. The α-class is denoted by C(α). For 
convenience, the class of a prefix p(φ, k) for an 
identifier φ is denoted by C(φ, k). Similarly, C(x, k) = 
C(id(x), k) for a node x, and C(X, k) = C(id(X), k) for an 
object X. Clearly, two nodes in the same class of a 
level-k prefix are contained in the same class at any 
level j < k. In addition, since NID’s are random, the 
average number of nodes in a class at level k + 1 is 
expected n × 2 – b × k, only 1/2b of the number at level k, 
for k ≥ 1, while the class of the null prefix ε contains 
all nodes. For a node x, C(x, l + 1) only contains x since 
id(x) is unique. 
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Figure 3. The level-k prefix and digit 
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However, since the expected cardinality of C(φ, k + 
1) is n × 2 – b × k, when k is small, recording C(φ, k + 1) 
in the routing table at a node is not scalable—a scalable 
algorithm should only take into account a subset of C(φ, 
k + 1) at a node. 

Thus, respect to an OID φ and a node y, we define 
the scope S(k, δ) locally at y for each level k = 1, 2, ... l, 
where δ = g(φ, k) and S(k, δ) is a subset of C(φ, k + 1) 
such that S(k, δ) contains those both in C(φ, k + 1) and 
somehow known to x. As will be described in 2.3, S(k, 
δ) is updated such that the nearest node in C(φ, k + 1) 
to x can be contained in S(k, δ) while the average 
cardinality of S(k, δ) is 

�
(2b), with high probability. 

In the absence of a complete distance map between 
nodes, a node will periodically estimate its network 
distances to those nodes recorded in its S(k, δ) for any k 
and δ. The network distance (i.e. the link cost) between 
two nodes x and y is denoted by d(x, y), and is typically 
measured half as the round-trip delay for a probing 
packet that bounces between x and y. A node caches 
the measured distances in a partial distance map at its 
local memory, and periodically updates these distances. 
We assume that d(x, y) = d(y, x) ≥ 0, and d(x, y) = 0 iff 
x is y.1 In addition, if y is unreachable from x for any 
reason, x resets d(x, y) to infinity. Periodically updating 
d(x, y) at x incurs little overhead since nodes in 
distributed systems typically need to exchange keep-
alive messages periodically. 

Each link belongs to a level; there are two types of 
links: I (informative) and F (forwarding). An I-link at a 
level k indicates that the nodes at the link endpoints 
consider each other neighbors at level k. All neighbors 
at a level k must share the same level-k NID prefix, and 
will exchange the routing information for the k-th NID 
digits via the corresponding I-links. A node uses a 
variable I(k) in its routing table to record all of its 
level-k neighbors. Note that there are only l different 
I(k) variables, i.e. for k = 1, 2, ... l, while each of these 
variables could contain 

�
(2b) node addresses with high 

probability, assuming that each node has 
�

(1) admin 
links. 

On the other hand, an F-link is directional, and is 
associated with a digit δ. The F-links actually provide 
some chains to forward queries and OID registrations. 
For each digit δ at a level k, an F-link from a node x to 
a node y indicates that x considers y the nearest node in 
S(k, δ). To represent this F-link, a variable F(k, δ) in 

                                                 
1 Since d(x, y) is typically half the round-trip time between node x 

and y, and since an AP that sends data on top of the transport layer, 
e.g. by using TCP/IP, it is reasonable (and typical in DHT 
approaches) that the network distances are assumed symmetric in 
opposite directions. In addition, to obtain analytic results, it is 
typically assumed by DHT approaches that for any three nodes x, y, 
and z, d(x, y) + d(y, z) ≥ d(x, z). 

the routing table at x is assigned y, while in the routing 
table at y, a variable V(k) is maintained for all level-k 
F-links ending at y and thus contains the address of x. 
Note that a node only has l × 2b different F(k, δ) 
variables, and it also has l different V(k) variables each 
of which could contain 

�
(2b) node addresses. 

Finally, for any level-k prefix α, we define the 
fabric of α as the subgraph where the vertices are C(α) 
and the arcs are all those level-k I-links between nodes 
in C(α). The fabric of α is also called the α-fabric. If 
the α-fabric contains only one node, forwarding a 
query in this fabric always reaches the destination host 
directly (if it exists). Thus, the fabric of a longer prefix 
with the first k – 1 digits equal to α is never needed in 
routing and thus not maintained. Therefore, with n 
nodes in GIN, each node would likely be contained in 
only 

�
(log n) fabrics. 

2.2. Handling Objects 

An object X registers its OID id(X) at host(X) that 
will distribute an object pointer [id(X), host(X)] to a 
limited number of nodes such that it is efficient and 
scalable to reply to a query for id(X). If id(X) has a set 
of replicas {Xi | i = 1, 2, …}, then [id(X), host(Xi)] is so 
distributed for each Xi. 

Referring to Figure 4, the object pointer of an object 
X is forwarded along F-links. For convenience, we 
define δk ≡ g(X, k) for each k = 1, 2... l. Then, [id(X), 
host(X)] is forwarded along a chain of nodes u0u1u2…ul 
where u0 ≡ host(X), and for k = 1, 2 … l, uk ≡ F(k, δk) 
recorded at uk – 1. Each node in the chain stores a copy 
of [id(X), host(X)]. If a node um finds that F(m + 1, δm + 

1) is null, the forwarding pauses at this node, but will 
resume if later F(m + 1, δm + 1) becomes non-null. In 
addition, for each k ∈ {0, 1, … m – 1}, uk multicasts 
[id(X), host(X)] to each node s ∈ S(k + 1, δk + 1). 
However, node s only stores a copy of [id(X), host(X)] 
but does not forward it. Finally, um sends [id(X), 
host(X)] to the node r = F(m + 1, δ′), where δ′ is the 
smallest digit such that F(m + 1, δ′) is non-null; r is 
called the root node of id(X), denoted by root(X). Each 
node will discard duplicate copies of an object pointer. 

To withdraw an object X, host(X) reuses the same 
forwarding chain (via F-links) that has been used for 
registering X as in Figure 4, to send an “object-

 

u0 
u1 u2 

u3 
F(1, δ1) 

F(2, δ2) 
F(3, δ3) 

OID in digits: δ1δ2δ3...δl 
 

Figure 4. The forwarding chain of F-links 
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withdrawal” message that will remove all existing 
copies of the object pointer [id(X), host(X)]. Similarly, 
the object withdrawal message is multicast to nodes in 
S(k + 1, δk + 1) by uk after the k-th hop, and finally sent 
to root(X). 

A query message for an OID φ is also forwarded via 
the F-links. Refer to Figure 4 again, with u0 indicating 
the query issuer, and δk ≡ g(φ, k) for each k = 1, 2... l. 
Then, starting from k = 0, uk searches in its memory to 
find an object pointer [φ, h] that matches π, where h is 
the host with minimal d(uk, h) if more than one [φ, h] is 
found. If a match is found, uk forwards the query to h 
that will access an object X with id(X) = φ and reply to 
u0. Otherwise, uk checks the current value of F(k + 1, δk 

+ 1) at it. If the current value is non-null, uk forwards the 
query to the next node uk + 1 = F(k + 1, δk + 1). If the 
current value is null, uk forwards the query to the root 
node r = F(m + 1, δ′) where δ′ is the smallest digit such 
that F(m + 1, δ′) is non-null. However, if r is uk itself, 
uk alternatively notifies u0 of an access failure. 

2.3. Handling Links 

Without a complete distance map between nodes, 
we design a heuristic algorithm that uses only a small 
and limited number of distance estimates to construct 
F-links. Based on the assumption that the level-1 fabric 
is a connected graph, the heuristic algorithm can ensure 
that all fabrics be connected graphs, and near nodes in 
a fabric be connected, with high probability, by I-links 
while the F-links be created properly. 

Referring to Figure 5, the heuristic algorithm works 
recursively—given any level-k I-links, the F-links on a 
level k will be created via those I-links while the I-links 
on level k + 1 will be created via the F-links on level k. 
It starts with the level-1 I-links, i.e. admin links. 

Specifically, based on the fabric of a level-k prefix 
α, we show how (and by what messages) those nodes 
can create proper F-links respect to a digit δ. Then, as 
those nodes with the k-th NID digit equal to δ are 
called the δ-nodes, we show how those δ-nodes in 
adjacent regions can create new I-links on the next 

level k + 1. The dynamics of the algorithm is shown 
chronologically, starting from Figure 6 to Figure 11, 
with explanations in the text. 

Figure 6 shows a fabric at level k, of an arbitrary 
prefix α, where only nodes in class C(α) and I-links 
between these nodes are shown. Now, we consider an 
arbitrary digit δ. Then, any δ-node v, i.e. with g(v, k) = 
δ, is drawn in black, while all the remaining nodes are 
in white. Following the algorithm, each δ-node v is 
required to advertise the fact that g(v, k) = δ, via all I-
links by which v is connected. The advertisements are 
denoted by dashed arrows. A receiver u of an 
advertisement from v now knows that at level k, v is a 
δ-node, and u also knows that very likely, v is near u, 
relative to other δ-nodes. Then, u obtains the distance 
estimate of d(u, v) if that has not been measured or the 
last measurement has expired. 

Referring to Figure 7, if u has received two (or more) 
advertisements for different δ-nodes, e.g. v and v′, u 
selects the nearest one. Whenever u selects (either for 
the first time or as an update) the nearest δ-node, say v, 
then u will forward the advertisement for x (denoted by 
dashed arrows in Figure 6) via all u’s I-links in the α-

 
I-links (admin) Level 1 F-links 

I-links F-links Level 2 

I-links Level l F-links  
Figure 5. The recursive manner in creating 

the F-links and I-links 

 
Figure 6. The advertisement for the nearest 
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Figure 7. Choosing the nearest δδδδ-node 
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fabric but avoid loops. In fact, u maintains variable S(k, 
δ) to record the set of nodes s which u is aware of with 
g(s, k) = δ. In addition, u constantly updates variable 
F(k, δ) = v ∈ S(k, δ) such that d(u, v) is minimal, and if 
v ≠ u, u sends a Vote message to v so that v adds u into 
v’s variable V(k) that records all those nodes selecting v 
as the nearest δ-node. Note that g(v, k) = δ. Moreover, 
the two entries, v in u’s F(k, δ) and u in v’s V(k), in pair 
represents an F-link from u to v on level k for digit δ. 
In the mean time, u utilizes its I-links to send all its 
neighbors an Advertise message so that the receiver 
will know v with g(v, k) = δ. On the other hand, as u 
receives another Advertise message for a node v′ ≠ F(k, 
δ) with g(v′, k) = δ, u checks if d(u, v′) < d(u, F(k, δ)). 
If so, u sends a Veto message to the node v = F(k, δ) so 
that v will remove u from V(k); then, u updates F(k, δ) 
= v′ and sends a Vote message to v′ so that v′ will add u 
into its V(k). Otherwise, since d(u, v′) ≥ d(u, F(k, δ)), u 
alternatively sends an Acquaint message to v, which 
will soon be described. 

Then, referring to Figure 8, every node including 
any δ-node eventually selects its nearest δ-node (a δ-
node always selects itself), and creates an F-link to that 
δ-node (drawn in an arrowed thick line). Note that to 
keep Figure 8 from becoming too cluttered, only those 
F-links pointing to the δ-node on the upper left corner 
are shown, while the F-links to other δ-nodes are not, 
but Figure 8 does show certain boundaries which form 
a partition of the nodes: In each region defined by these 
boundaries (drawn in dashed lines), the F-links of all 
nodes point to the same δ-node. 

Referring to Figure 9, consider those I-links (in 
thick lines) that are crossed by boundary lines. The 
nodes (always in pairs) connected by such I-links are 
called the boundary nodes that play the key role in 
creating new I-links at the next level. Referring to 
Figure 10, we take a closer look at two boundary nodes 
x and y in the fabric of a level-k prefix α, where w and 
z are the δ-nodes for a digit δ. Clearly, a boundary 
node x receives two (at least) Advertise messages for w 
and z, respectively; x can infer that both w and z are 
near x in this α-fabric, and thus, w and z are near each 
other in the αδ-fabric where they are both contained. 
Suppose x sets F(k, δ) = w, x sends an Acquaint 
message (marked by 1) to w so that w will create a 
next-level I-link with z in the αδ-fabric if z ∉ I(k + 1) 
at w, i.e. add z into I(k + 1) and send a Hello message 
to z (marked by 2) so that z will also add w into z’s I(k 
+ 1). The newly created I-link will then be exploited by 
w and z to exchange Advertise messages for NID digits 
such as g(w, k + 1) and g(z, k + 1) for F-links in the αδ-
fabric. Therefore, referring to Figure 11, each pair of 
acquainted δ-nodes will create an I-link at the next 
level k + 1. Note that duplicate I-links (with the same 
node addresses on both ends) will not be created. 

Each node x periodically updates d(x, y) iff y ∈ S(k, 
δ) for any k and any δ at x. Updating d(x, y) could 
possibly update x’s F(k, δ), and generate Advertise 
messages to alter some F-links and I-links elsewhere. If 
a Detach command removes a level-1 I-link between x 
and y, both x and y delete the entries for each other 
from S(k, δ) for each k and each δ, and set d(x, y) = ∞. 

Since the heuristic algorithm is based on the admin 
links that are created by AP’s, if the admin I-links of a 
node x connect x to distant nodes but no node nearby, 
other links might also be created improperly. Thus, an 
optional remedial action can be taken to optimize the 
link topology by sending an Advise message (marked 
by 3 in Figure 10) from w to each node y* ∈ V(k), with 
a probability, to check if d(y*, z) < d(y*, w). 

 
Figure 9. The Acquaint messages from 

boundary nodes to δδδδ-nodes 
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Figure 10. The Acquaint, Hello, and Advise 

messages in creating an I-link 

 
Figure 11. I-links created at level k + 1 by 

messaging in a level-k fabric 



In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005 

7 

2.4. Soft States and Fault Tolerance 

A node constantly probes other nodes via I-links 
and F-links, to detect node failures. All entries in 
variable I(k), S(k, δ), F(k, δ), and V(k), as well as the 
object pointers, are maintained in soft states. An entry 
expires if it has not been renewed by a timeout. If an 
entry x ∈ S(k, δ) expires where x = F(k, δ) for some k 
and δ, then F(k, δ) must be updated by the new nearest 
node in S(k, δ) \ {x}, which may change other I-links 
and F-links. The timeout should be selected carefully 
to achieve high performance in applications. The ideal 
soft-state timeout, regarding the overhead of renewal 
and the timeliness of failure detection, may be twice as 
long as the renewal period. 

Using soft states in the routing tables improves fault 
tolerance, and significantly reduces the overhead when 
a GIN overlay is to be partitioned if two organizations 
terminate their affiliating-relationship, e.g. for contract 
expiration. Then, an object pointer to an object at a no-
longer-affiliated organization can easily be removed by 
timeout since it will not be renewed any more. 

3. Analysis Results 

Theorem 1 (Resilience) Given that the admin links 
are created such that the level-1 fabric is a connected 
graph, all fabrics become connected graphs.� 

Theorem 2 (Fabrics) With n nodes, there are up to 
2n – 1 fabrics maintained in GIN.� 

Theorem 3 (Memory Usage) Assume that there are 
n nodes with 

�
(n) objects and each node has 

�
(1) 

admin links. Then, the average routing table size per 
node is 

�
(log n) with high probability.� 

Theorem 4 (Merging Complexity) A merging of 
two GINs with n1 and n2 nodes, and 

�
(n1) and 

�
(n2) 

objects, respectively, requires 
�

(n1) total messages on 
average with high probability, as n1 ≤ n2 and n2 = 

�
(n1). 

However, if instead n1 << n2, a merging requires Ο (n1 

log n2) messages.� 
Theorem 5 (Routing Efficiency) The forwarding 

path of a query has a 
�

(1) latency stretch with high 
probability.� 

Consider that a node y issues a query for an OID φ, 
and the host of an object X with id(X) = φ replies to y, 
with a latency L. Then, the stretch of the access path 
from y to X is defined as 

))(,(2 Xhostyd

L

×
, 

where L is the roundtrip time, and the processing time 
for host(X) to access X is ignored. Thus, the stretch is a 
ratio that indicates the efficiency in forwarding a 
query—a smaller stretch indicates higher efficiency. 

Referring to Figure 12, the publishing path and the 
querying path in GIN would overlap with high 
probability at a node at a network distance that is 
comparable to the distance between the query issuer 
and the host of the queried object. Since the 
overlapping node has a copy of the object pointer, the 
query is immediately sent to the host address so that 
the overall latency in forwarding this query is also 
comparable to the network distance between the query 
issuer and the host, that is, it has a 

�
(1) stretch, with 

high probability. This routing scheme is similar to the 
PRR scheme of which the achieved 

�
(1) stretch has 

been formally proven in [19]. 

4. Simulation Results 

Refer to Figure 13 for three underlying networks in 
our simulations where the participating nodes are 
initially clustered in the local area networks (LAN’s), 
and extra admin links will be created between LAN’s. 
The number annotating an arc between two LAN’s is 
the network distance (i.e. the propagation delay of any 
message) between those two LAN’s. The network 
distance between any two nodes in different LAN’s is 

HostIssuer

Root Publishing path
Querying path

HostIssuer

Root Publishing path
Querying path

HostIssuer

Root Publishing path
Querying path

 
Figure 12. Overlapping of the querying and 

publishing paths in GIN 

 

2 8 9 

1 

0 

5 7 

6 

4 

3 100 
1000 

300 

200 

200 

500 

800 

1000 

300 

100 100 

200 

2 

4 1 

0 

3 

100 

500 1000 

200 

1000 

1 4 

2 

0 3 

200 
1000 

300 
5 6 8 

7 9 
100 500 200 

1000 
500 

600 

300 

500 100 

400 

(a) 

(b) 

(c) 

 
Figure 13. Underlying network topologies 
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4 ms plus the shortest path delay between their LAN’s. 
In addition, the network distance between any two 
nodes in the same LAN is 2 ms. We assume that each 
node spends 1 ms at processing each GIN message, or 
accessing a locally registered object (as a host handling 
an incoming query for the object). In all simulations, b 
= 1 or 4, l = 32, and the Advise probability = 1/3. 

4.1. Merging Complexity 

We design two separate simulations on the same 
underlying network topology in Figure 13(a) but with 
different chronological orders in creating the admin 
links such that the merging conditions are different. In 
the first simulation, two GINs in similar sizes merge 
into one. In the second simulation, a smaller GIN (with 
fewer nodes) merges with a larger GIN (with more 
nodes). Note that the total numbers of all nodes (in the 
two merging GINs) in both simulations will be equal. 
We set b = 1 in both simulations. 

Here we describe the first simulation. Initially at 0 
sec, the simulation generates 300 nodes each of which 
is placed in a randomly selected LAN (i.e. the local 
cluster). Then, each node randomly chooses another 
node in the same LAN to create an admin link with that 
node. Then, at 1 sec, for each pair of LAN’s connected 
in a solid line, we randomly choose one node from 
each LAN, and create an admin link between those two 
nodes. As such, two GINs are initially created, while 
all generated messages are recorded. In the simulation, 
no messages are generated after 20 seconds—i.e. the 
routing table contents at all nodes have converged and 
become stable by 20 sec. 

Then, we create two extra admin links: One is to 
make the two GIN overlays merge, while the other is to 
later create a loop in the merged GIN overlay. That is, 
at 50 second, we first create an admin link between two 
nodes that are randomly selected from LAN 0 and 6, 
respectively. Then, at 100 second, we create the second 
admin link between two nodes that are randomly 
selected from LAN 3 and 4, respectively. 

Figure 14 shows the simulation result in a three-
dimensional diagram where the x-axis is the time, the 
y-axis is the level with which a message is associated, 
and the z-axis is the number of generated messages in 
each 1-second interval on a level. We categorize the 
generated messages by different levels to show the 
recursive behavior of our algorithm. Clearly, creating 
an admin link (i.e. an I-link on level 1) results in a 
sequence of messages that climb up the levels—as the 
F-links are updated at a level, some I-links are created 
at the higher level and trigger more updates of the F-
links there. 

Now, we describe the second simulation where two 
GINs in different sizes merge. On the same underlying 

network topology and with the same number of nodes 
as in the previous simulation, the admin links in this 
simulation are created in a different chronological 
order. A larger GIN is initialized with the nodes in all 
LAN’s excluding LAN 8, while a smaller GIN is 
initialized with only those nodes in LAN 8. In addition, 
the admin links between LAN’s are created at 1 sec 
except that the admin link between LAN 2 and 8 will 
be created at 50 sec. It is observed that the routing table 
contents converge by 35 sec (compared to 20 sec in the 
previous simulation) since the larger GIN has a longer 
network diameter; then, the admin link created last at 
50 sec makes the two different-sized GINs merge. Note 
that we do not create a loop in this simulation. 

Figure 15 shows the second simulation result in a 3-
dimensional diagram similar to Figure 14. Compared to 
the previous simulation, the total number of messages 
generated for the created admin link at 50 sec is 
significantly lower. We conclude that the number of 
messages generated for merging two GINs depends on 
the number of nodes in the smaller GIN. However, the 
convergence of the merging still takes approximately 
38 seconds in Figure 14 and 30 seconds in Figure 15. 
Thus, the convergence time depends on the underlying 
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network diameter (similar in these two simulations) for 
message propagation delays. 

In addition, we categorize the messages by type, and 
observe that the majority of the generated messages are 
Advertise, approximately 60%. 

4.2. Routing Table Size 

Here, we show the simulation results of the average 
routing table size that is dynamically tracked at run 
time, with b = 4 and l = 32, for two cases n = 100 and n 
= 300, where n is the total number of nodes. We use 
the underlying network topology in Figure 13(a) for n 
= 300, and Figure 13(b) for n = 100. In addition to 
these two simulations, we design a set of simulations 

where n is a variable chosen in a range from 150 to 450, 
with b = 4, using the underlying network topology 
shown in Figure 13(c). In those simulations, we 
initialize the nodes and the admin links at 0 sec, and 
then we record the cardinalities (or sizes) of all I(k), 
V(k), and S(k, δ) variables at run time. 

The results of the first 2 simulations are shown in 
Figure 16 and the last in Figure 17. Note that the I-
series is for the average number of entries in all I(k)’s 
variables per node, recorded at the end of each 1-
second interval. Similarly, the V-series is for all V(k)’s 
per node, and the S-series is for all S(k, δ)’s per node. 
In Figure 16, since no more messages are generated 
after 8 sec in both cases, the routing table contents 
converge and the sizes become stable. It can be seen 
that as n increases 200% (from 100 to 300), the 
average number of entries in all these variables 
increases only 36% (approximately from 53 to 72). It is 
easier to see in Figure 17 (the x-axis on logarithmic 
scale) that the average routing table size increases only 
logarithmically with n. 

4.3. Stretch 

Then, we use the underlying network topology in 
Figure 13(c) and design two simulations (with b = 1 
and b = 4, respectively), both with n = 300, to observe 
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Figure 16. Simulation results of the runtime 
convergence of average routing table size 
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the stretch of the routing latency in processing queries 
for objects. Each simulation has all nodes and admin 
links initially generated at 0 sec. Then, four objects are 
registered, each with unique OID’s, and the host of 
each object is randomly chosen from the nodes in LAN 
0, 1, 4, and 5, respectively. For each object X, 200 
nodes issue a query for id(X), where 20 nodes per LAN 
are randomly selected to do so. 

The simulation results are shown in Figure 18. The 
cumulative distribution functions (CDFs) of the latency 
stretches for those four objects are plotted separately. 
Approximately 90% stretches are less than 2.0 as b = 1, 
and 80% as b = 4. We conclude that the access latency 
to an object has a 

�
(1) stretch with high probability. 

5. Conclusion 

We have proposed GIN for collaborative nodes to 
share objects across affiliated organizations, allowing 
their local namespaces to merge upon affiliating. It can 
forward a query with an 

�
(1) latency stretch with high 

probability and achieve high performance. Its routing 
tables are maintained in soft-states for fault tolerance, 
with a scalable and efficient algorithm, and adapting to 
performance updates of network distances. Thus, it has 
significant new advantages for building a DHT-based 
namespace for applications that will collaborate across 
organizations with dynamic affiliating-relationship. 
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