
In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

1

On-Demand Overlay Networking of Collaborative Applications

Cheng-Jia Lai † Richard R. Muntz
Fuji Xerox Palo Alto Laboratory, Inc. Computer Science Department, UCLA

cjlai@fxpal.com muntz@cs.ucla.edu

Abstract

We propose a new overlay network, called Generic
Identifier Network (GIN), for collaborative nodes to
share objects with transactions across affiliated
organizations by merging the organizational local
namespaces upon mutual agreement. Using local
namespaces instead of a global namespace can avoid
excessive dissemination of organizational information,
reduce maintenance costs, and improve robustness
against external security attacks. GIN can forward a
query with an

�
(1) latency stretch with high

probability and achieve high performance. In the
absence of a complete distance map, its heuristic
algorithms for self configuration are scalable and
efficient. Routing tables are maintained using soft-state
mechanisms for fault tolerance and adapting to
performance updates of network distances. Thus, GIN
has significant new advantages for building an efficient
and scalable Distributed Hash Table for modern
collaborative applications across organizations.

1. Introduction

Modern middleware, such as Web Services [4],
CORBA [15] and DCOM [12], facilitates remote
object access, where collaborative nodes can make a
remote procedure call for accessing an object (also
known as web resource or service) installed at each
other as easily as accessing a locally installed object.
Those nodes are typically installed in clusters each of
which represents an organization, e.g. business
corporations, governments, special-purpose/interest
communities, regions of online multiplayer games, and
peer-to-peer (P2P) file-sharing systems [6][7][14][24].
An organization is autonomous for managing its node
and object installation including location and
replication, for high performance, fault tolerance,
security, authorization, etc. Despite the autonomy, a
node collaborating with other nodes in a decentralized
transaction—e.g. by Web Service Choreography [5], or
Business Process Execution Language (BPEL) [1]—

may need to access objects outside its organization.
Thus, upon demands from the current applications, an
organization is affiliated with some other organizations
such that a node in it can remotely access objects in its
affiliates. However, as those application demands are
transient, e.g. regulated by mutually agreed policies or
contracts [25], the on-demand affiliating between their
organizations will not be persistent. In addition, objects
can have mobile locations due to dynamic authoring,
caching, or replicating. Thus, we are focused on how to
facilitate remote access to mobile and transient objects
in dynamically affiliated organizations, with a scalable
and efficient query-forwarding algorithm.

We assume that each object is assigned a character
string as its “name” that is the key for a querying node
to find the object on the network. Thus, a namespace
for all available objects in the affiliated organizations
should be maintained, where the object names are only
significant locally in those affiliates. This is different
from using a global name service that assigns each
object, for example, a Uniform Resource Identifier
(URI) [3], which is either a Uniform Resource Locator
(URL) or Name (URN). Using a URL tightly binds the
object access point to the hostname written in the URL,
while using a URN avoids such binding but requires a
namespace identifier that must be globally unique.
Both the URL and URN schemes need Domain Name
System (DNS) to retrieve the IP addresses of the URL
hostnames, and the dedicated URN name resolvers for
a namespace identifier, respectively. Unfortunately, as
recently reported in [16], the currently deployed DNS
servers have severe load-imbalance, resulting in poor
performance and scalability. Caching among the DNS
servers also has low coherency upon updates [17]. To
address these problems, it has recently been advocated
that a global name service should be implemented
using the emergent Distributed Hash Table (DHT)
approaches [8][10][20][22][23], which initially aimed
at supporting P2P file-sharing systems on large scales.
For example, CoDoNS [21] was proposed as a DNS
implementation using Beehive [20], which is a DHT
with proactive caching. A four-layer Internet naming
architecture [2] was proposed using DHT technologies
to allow objects to have a globally unique and flat
name. These global name services can provide high † The work was previously finished in Computer Science Department

at University of California, Los Angeles (UCLA).

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

2

performance and scalability in answering queries based
on DHTs.

However, deploying a global name service for local
objects in a set of affiliated organizations has several
drawbacks. First, it excessively disseminates the name
registrations across orthogonal namespaces each of
which belongs to a set of affiliated organizations where
nodes never access external objects. This excessive
dissemination results in high overhead for maintaining
the namespace, and violates the privacy policies that,
typical in practice, disallow unnecessary information
leakage. Second, subscribers to a global name service
are often required to pay fees for service maintenance
and management, while self-installing a local name
service makes economy. Third, it is more difficult to
generate an object name with global uniqueness, and is
unnecessary when local uniqueness suffices. Finally,
relying on a global name service poses security threats
to those organizations when the global name service is
vulnerable to attacks.

Thus, we argue that an organization should instead
employ a local name service for addressing its internal
objects for its own applications, and that if multiple
organizations are affiliated, their local name services
should accordingly become merged to reflect a mutual

agreement for sharing objects, while the autonomy for
managing internal objects is preserved at all times. To
provide scalability and efficiency, we also advocate
that a local name service be implemented in a DHT
approach. However, in addition to those functions for
supporting P2P systems, our approach—called Generic
Identifier Network (GIN)—supports dynamic creation
and removal of admin links for affiliation-relationships.
In general, an admin link connecting two nodes shows
that the two nodes participate in the same namespace.
Thus, admin links are used to connect nodes inside an
organization for clustering as well as nodes in different
organizations for affiliating.

For example, referring to Figure 1, there are 3 sets
of affiliated organizations. Although it is typical for an
organization to reside within one local area network
(LAN), two or more organizations may coexist in one
LAN, either affiliated or not, while one organization
may have its nodes distributed in multiple LANs with
admin links connecting those nodes. Therefore, the
topology of the admin links in a GIN does not reveal
which node belongs to which organization, though an
admin link can be annotated with a high link-cost if
affiliating two organizations. Note that the admin links
in GIN are allowed to form a loop, e.g. a-b-c-d-e-a, for
fault tolerance and ease of maintenance.

Based on the created admin links, GIN dynamically
create some other overlay links to facilitate locating an
object by its object name. Like other DHT approaches,
a predefined hash function is deployed to generate a
fixed-length Object Identifier (OID) from each object
name such that an OID has a pseudo-random numeric
value. Then, an object registers its OID at its hosting
node so that an application process (AP) can use any
node in the same namespace to send a query for it by
specifying its OID. Objects can be mobile since object
names and OIDs need not contain any information for
the hosting nodes’ network addresses.

For example, referring to Figure 2, an object X is
registered at a node y by an Insert command so that y
acquires explicit access to X, which can be exercised
on behalf of a local or remote AP—y can update or
retrieve the contents of X, trigger some actions on X, or
simply deliver an event or a message to X. Then, node
y is called the host of object X, and is denoted by
host(X). The OID of X is denoted by id(X). In GIN, an
object X is allowed to have multiple replicas that share
the same OID, i.e. id(X), registered at different hosts. A
query for id(X) from the issuer, i.e. the node issuing the
query on behalf of a querying AP, is sent to one of the
hosts of X, and the query is likely to be received by the
host nearest to the issuer.

Our approach shares many desirable properties with
other DHT proposals. Suppose a namespace involves n
nodes and

�
(n) objects where a node has

�
(1) admin

Wide Area
Network

Two clusters that are
unaware of each other

Local Area Network

Administrative link

a
b

c

d
e

f

g

h

i

Figure 1. Admin links between nodes

AP

GIN Overlay

X

Insert id(X)
(Register)

Other Channel
or Repository

Put id(X) and
X ’s description

AP

Get id(X) and
X ’s description

Query
id(X)

Choose to read
or write object X

Issuer host(X)

Figure 2. Object registration and query

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

3

links. Then, the average routing table size is
�

(log n)
per node with high probability, which is scalable. Since
the overlay links in GIN are built with the awareness of
node locations, like Tapestry [8] and Pastry [23], it can
provide a latency stretch as low as

�
(1) in forwarding a

query with high probability. Its overlay network is self-
configurable, and resilient with soft-state techniques.

 Nonetheless, unlike other DHT proposals, GIN can
dynamically adapt to the performance updates of those
link-costs that are typically dependent on the end-to-
end transmission delays between nodes. In addition,
two GINs with n1 and n2 nodes (n1 ≤ n2), and

�
(n1) and

�
(n2) objects, respectively, will merge by

�
(n1 log n2)

messages if n1 << n2, or
�

(n1) otherwise, on average
with high probability. This implies that inserting a new
node into a GIN with n nodes takes

�
(log n) messages

only. Partitioning a GIN and removing a node require
similar numbers of messages to those for merging two
GINs and inserting a node, respectively.

2. GIN Infrastructure

Each node, say u, is assigned a random but unique
Node Identifier (NID), denoted by id(u). The OID and
the NID share the same format with a fixed number of
bits, e.g. 128 bits. NID’s and OID’s are all considered
pseudo random, typically generated by a hash function
that takes as input the text string of the node or object
name, properties, or contents, and outputs a hash code
equally likely to be any in the range of possible values.

A node can send and receive messages to and from
any other node through an underlying network. The
underlying network defines a set of network addresses,
assigns each node a unique network address, and is
capable of delivering a message from any node to any
other node that is identified by its underlying network
address. (We write “address,” “network address,” and
“underlying network address,” interchangeably.) The
underlying network is typically a transport-layer data
transmission service, e.g., TCP. Thus, the node address
in GIN can be a combination of its IP address and TCP
port number for the TCP socket. GIN identifies a node
by its node address and uses a node address to refer to
any remote node. When the context is clear, we simply

write the address of a node x as x.
The routing tables at those GIN nodes contain two

data structures: links, and object pointers. An object
pointer [OID, host] means that an object with that OID
has been registered at that host. In this section, we will
describe how to use the data structures to find an object
with a specified OID, and how to maintain these data
structures dynamically.

2.1. Basics

Both the OID and the NID have l × b bits, where b
is a small integer and l is the number of levels. Assume
that l = Ω (log n) where n is the total number of nodes,
e.g., b = 4 and l = 32. Both the OID and the NID have l
× b bits.

Refer to Figure 3. For each level k = 1, 2, … l, we
define the digit of an ID (either an OID or a NID) to be
the number represented in binary by those b bits from
bit (k – 1) × b to bit k × b – 1, where the bits are
indexed in order from left to right, starting with 0. This
digit is the “routing goal” at level k, and is denoted by
g(φ, k) for an identifier φ. Note that g(id(x), k) is briefly
written as g(x, k) for a node x, and g(id(X), k) as g(X, k)
for an object X.

We define the prefix of an identifier φ at a level k to
be the ordered sequence of the first k – 1 digits of φ,
which is denoted by p(φ, k). Similarly, p(x, k) = p(id(x),
k) for a node x, and p(X, k) = p(id(X), k) for an object X.
Note that p(φ, 1) is always a null prefix, denoted by ε,
that contains no digit, and p(φ, l + 1) = φ, for
convenience. For an identifier θ, when p(θ, k) = p(φ, k),
we say that θ matches p(φ, k). Clearly, all identifiers
match ε at level 1, while a node x is the only node with
an NID matching p(x, l + 1). In addition, for a prefix α
at level k and for a digit δ, we write αδ to refer to the
prefix at level k + 1 such that the first k – 1 digits are α
and the k-th digit is δ.

For a level-k prefix α, we define the class of α (also
called the α-class) as the set of all those nodes with an
NID matching α. The α-class is denoted by C(α). For
convenience, the class of a prefix p(φ, k) for an
identifier φ is denoted by C(φ, k). Similarly, C(x, k) =
C(id(x), k) for a node x, and C(X, k) = C(id(X), k) for an
object X. Clearly, two nodes in the same class of a
level-k prefix are contained in the same class at any
level j < k. In addition, since NID’s are random, the
average number of nodes in a class at level k + 1 is
expected n × 2 – b × k, only 1/2b of the number at level k,
for k ≥ 1, while the class of the null prefix ε contains
all nodes. For a node x, C(x, l + 1) only contains x since
id(x) is unique.

b bits

bit 0 l × b – 1

(k – 1) × b k × b – 1

(k – 1)×b bits

p(φ, k)

φ

g(φ, k)

Figure 3. The level-k prefix and digit

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

4

However, since the expected cardinality of C(φ, k +
1) is n × 2 – b × k, when k is small, recording C(φ, k + 1)
in the routing table at a node is not scalable—a scalable
algorithm should only take into account a subset of C(φ,
k + 1) at a node.

Thus, respect to an OID φ and a node y, we define
the scope S(k, δ) locally at y for each level k = 1, 2, ... l,
where δ = g(φ, k) and S(k, δ) is a subset of C(φ, k + 1)
such that S(k, δ) contains those both in C(φ, k + 1) and
somehow known to x. As will be described in 2.3, S(k,
δ) is updated such that the nearest node in C(φ, k + 1)
to x can be contained in S(k, δ) while the average
cardinality of S(k, δ) is

�
(2b), with high probability.

In the absence of a complete distance map between
nodes, a node will periodically estimate its network
distances to those nodes recorded in its S(k, δ) for any k
and δ. The network distance (i.e. the link cost) between
two nodes x and y is denoted by d(x, y), and is typically
measured half as the round-trip delay for a probing
packet that bounces between x and y. A node caches
the measured distances in a partial distance map at its
local memory, and periodically updates these distances.
We assume that d(x, y) = d(y, x) ≥ 0, and d(x, y) = 0 iff
x is y.1 In addition, if y is unreachable from x for any
reason, x resets d(x, y) to infinity. Periodically updating
d(x, y) at x incurs little overhead since nodes in
distributed systems typically need to exchange keep-
alive messages periodically.

Each link belongs to a level; there are two types of
links: I (informative) and F (forwarding). An I-link at a
level k indicates that the nodes at the link endpoints
consider each other neighbors at level k. All neighbors
at a level k must share the same level-k NID prefix, and
will exchange the routing information for the k-th NID
digits via the corresponding I-links. A node uses a
variable I(k) in its routing table to record all of its
level-k neighbors. Note that there are only l different
I(k) variables, i.e. for k = 1, 2, ... l, while each of these
variables could contain

�
(2b) node addresses with high

probability, assuming that each node has
�

(1) admin
links.

On the other hand, an F-link is directional, and is
associated with a digit δ. The F-links actually provide
some chains to forward queries and OID registrations.
For each digit δ at a level k, an F-link from a node x to
a node y indicates that x considers y the nearest node in
S(k, δ). To represent this F-link, a variable F(k, δ) in

1 Since d(x, y) is typically half the round-trip time between node x

and y, and since an AP that sends data on top of the transport layer,
e.g. by using TCP/IP, it is reasonable (and typical in DHT
approaches) that the network distances are assumed symmetric in
opposite directions. In addition, to obtain analytic results, it is
typically assumed by DHT approaches that for any three nodes x, y,
and z, d(x, y) + d(y, z) ≥ d(x, z).

the routing table at x is assigned y, while in the routing
table at y, a variable V(k) is maintained for all level-k
F-links ending at y and thus contains the address of x.
Note that a node only has l × 2b different F(k, δ)
variables, and it also has l different V(k) variables each
of which could contain

�
(2b) node addresses.

Finally, for any level-k prefix α, we define the
fabric of α as the subgraph where the vertices are C(α)
and the arcs are all those level-k I-links between nodes
in C(α). The fabric of α is also called the α-fabric. If
the α-fabric contains only one node, forwarding a
query in this fabric always reaches the destination host
directly (if it exists). Thus, the fabric of a longer prefix
with the first k – 1 digits equal to α is never needed in
routing and thus not maintained. Therefore, with n
nodes in GIN, each node would likely be contained in
only

�
(log n) fabrics.

2.2. Handling Objects

An object X registers its OID id(X) at host(X) that
will distribute an object pointer [id(X), host(X)] to a
limited number of nodes such that it is efficient and
scalable to reply to a query for id(X). If id(X) has a set
of replicas {Xi | i = 1, 2, …}, then [id(X), host(Xi)] is so
distributed for each Xi.

Referring to Figure 4, the object pointer of an object
X is forwarded along F-links. For convenience, we
define δk ≡ g(X, k) for each k = 1, 2... l. Then, [id(X),
host(X)] is forwarded along a chain of nodes u0u1u2…ul
where u0 ≡ host(X), and for k = 1, 2 … l, uk ≡ F(k, δk)
recorded at uk – 1. Each node in the chain stores a copy
of [id(X), host(X)]. If a node um finds that F(m + 1, δm +

1) is null, the forwarding pauses at this node, but will
resume if later F(m + 1, δm + 1) becomes non-null. In
addition, for each k ∈ {0, 1, … m – 1}, uk multicasts
[id(X), host(X)] to each node s ∈ S(k + 1, δk + 1).
However, node s only stores a copy of [id(X), host(X)]
but does not forward it. Finally, um sends [id(X),
host(X)] to the node r = F(m + 1, δ′), where δ′ is the
smallest digit such that F(m + 1, δ′) is non-null; r is
called the root node of id(X), denoted by root(X). Each
node will discard duplicate copies of an object pointer.

To withdraw an object X, host(X) reuses the same
forwarding chain (via F-links) that has been used for
registering X as in Figure 4, to send an “object-

u0
u1 u2

u3
F(1, δ1)

F(2, δ2)
F(3, δ3)

OID in digits: δ1δ2δ3...δl

Figure 4. The forwarding chain of F-links

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

5

withdrawal” message that will remove all existing
copies of the object pointer [id(X), host(X)]. Similarly,
the object withdrawal message is multicast to nodes in
S(k + 1, δk + 1) by uk after the k-th hop, and finally sent
to root(X).

A query message for an OID φ is also forwarded via
the F-links. Refer to Figure 4 again, with u0 indicating
the query issuer, and δk ≡ g(φ, k) for each k = 1, 2... l.
Then, starting from k = 0, uk searches in its memory to
find an object pointer [φ, h] that matches π, where h is
the host with minimal d(uk, h) if more than one [φ, h] is
found. If a match is found, uk forwards the query to h
that will access an object X with id(X) = φ and reply to
u0. Otherwise, uk checks the current value of F(k + 1, δk

+ 1) at it. If the current value is non-null, uk forwards the
query to the next node uk + 1 = F(k + 1, δk + 1). If the
current value is null, uk forwards the query to the root
node r = F(m + 1, δ′) where δ′ is the smallest digit such
that F(m + 1, δ′) is non-null. However, if r is uk itself,
uk alternatively notifies u0 of an access failure.

2.3. Handling Links

Without a complete distance map between nodes,
we design a heuristic algorithm that uses only a small
and limited number of distance estimates to construct
F-links. Based on the assumption that the level-1 fabric
is a connected graph, the heuristic algorithm can ensure
that all fabrics be connected graphs, and near nodes in
a fabric be connected, with high probability, by I-links
while the F-links be created properly.

Referring to Figure 5, the heuristic algorithm works
recursively—given any level-k I-links, the F-links on a
level k will be created via those I-links while the I-links
on level k + 1 will be created via the F-links on level k.
It starts with the level-1 I-links, i.e. admin links.

Specifically, based on the fabric of a level-k prefix
α, we show how (and by what messages) those nodes
can create proper F-links respect to a digit δ. Then, as
those nodes with the k-th NID digit equal to δ are
called the δ-nodes, we show how those δ-nodes in
adjacent regions can create new I-links on the next

level k + 1. The dynamics of the algorithm is shown
chronologically, starting from Figure 6 to Figure 11,
with explanations in the text.

Figure 6 shows a fabric at level k, of an arbitrary
prefix α, where only nodes in class C(α) and I-links
between these nodes are shown. Now, we consider an
arbitrary digit δ. Then, any δ-node v, i.e. with g(v, k) =
δ, is drawn in black, while all the remaining nodes are
in white. Following the algorithm, each δ-node v is
required to advertise the fact that g(v, k) = δ, via all I-
links by which v is connected. The advertisements are
denoted by dashed arrows. A receiver u of an
advertisement from v now knows that at level k, v is a
δ-node, and u also knows that very likely, v is near u,
relative to other δ-nodes. Then, u obtains the distance
estimate of d(u, v) if that has not been measured or the
last measurement has expired.

Referring to Figure 7, if u has received two (or more)
advertisements for different δ-nodes, e.g. v and v′, u
selects the nearest one. Whenever u selects (either for
the first time or as an update) the nearest δ-node, say v,
then u will forward the advertisement for x (denoted by
dashed arrows in Figure 6) via all u’s I-links in the α-

I-links (admin) Level 1 F-links

I-links F-links Level 2

I-links Level l F-links
Figure 5. The recursive manner in creating

the F-links and I-links

Figure 6. The advertisement for the nearest

δδδδ-node is forwarded via I-links.
 u′

u

v

v′
[v]

[v]
[v′]

Figure 7. Choosing the nearest δδδδ-node

Figure 8. Creating proper F-links

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

6

fabric but avoid loops. In fact, u maintains variable S(k,
δ) to record the set of nodes s which u is aware of with
g(s, k) = δ. In addition, u constantly updates variable
F(k, δ) = v ∈ S(k, δ) such that d(u, v) is minimal, and if
v ≠ u, u sends a Vote message to v so that v adds u into
v’s variable V(k) that records all those nodes selecting v
as the nearest δ-node. Note that g(v, k) = δ. Moreover,
the two entries, v in u’s F(k, δ) and u in v’s V(k), in pair
represents an F-link from u to v on level k for digit δ.
In the mean time, u utilizes its I-links to send all its
neighbors an Advertise message so that the receiver
will know v with g(v, k) = δ. On the other hand, as u
receives another Advertise message for a node v′ ≠ F(k,
δ) with g(v′, k) = δ, u checks if d(u, v′) < d(u, F(k, δ)).
If so, u sends a Veto message to the node v = F(k, δ) so
that v will remove u from V(k); then, u updates F(k, δ)
= v′ and sends a Vote message to v′ so that v′ will add u
into its V(k). Otherwise, since d(u, v′) ≥ d(u, F(k, δ)), u
alternatively sends an Acquaint message to v, which
will soon be described.

Then, referring to Figure 8, every node including
any δ-node eventually selects its nearest δ-node (a δ-
node always selects itself), and creates an F-link to that
δ-node (drawn in an arrowed thick line). Note that to
keep Figure 8 from becoming too cluttered, only those
F-links pointing to the δ-node on the upper left corner
are shown, while the F-links to other δ-nodes are not,
but Figure 8 does show certain boundaries which form
a partition of the nodes: In each region defined by these
boundaries (drawn in dashed lines), the F-links of all
nodes point to the same δ-node.

Referring to Figure 9, consider those I-links (in
thick lines) that are crossed by boundary lines. The
nodes (always in pairs) connected by such I-links are
called the boundary nodes that play the key role in
creating new I-links at the next level. Referring to
Figure 10, we take a closer look at two boundary nodes
x and y in the fabric of a level-k prefix α, where w and
z are the δ-nodes for a digit δ. Clearly, a boundary
node x receives two (at least) Advertise messages for w
and z, respectively; x can infer that both w and z are
near x in this α-fabric, and thus, w and z are near each
other in the αδ-fabric where they are both contained.
Suppose x sets F(k, δ) = w, x sends an Acquaint
message (marked by 1) to w so that w will create a
next-level I-link with z in the αδ-fabric if z ∉ I(k + 1)
at w, i.e. add z into I(k + 1) and send a Hello message
to z (marked by 2) so that z will also add w into z’s I(k
+ 1). The newly created I-link will then be exploited by
w and z to exchange Advertise messages for NID digits
such as g(w, k + 1) and g(z, k + 1) for F-links in the αδ-
fabric. Therefore, referring to Figure 11, each pair of
acquainted δ-nodes will create an I-link at the next
level k + 1. Note that duplicate I-links (with the same
node addresses on both ends) will not be created.

Each node x periodically updates d(x, y) iff y ∈ S(k,
δ) for any k and any δ at x. Updating d(x, y) could
possibly update x’s F(k, δ), and generate Advertise
messages to alter some F-links and I-links elsewhere. If
a Detach command removes a level-1 I-link between x
and y, both x and y delete the entries for each other
from S(k, δ) for each k and each δ, and set d(x, y) = ∞.

Since the heuristic algorithm is based on the admin
links that are created by AP’s, if the admin I-links of a
node x connect x to distant nodes but no node nearby,
other links might also be created improperly. Thus, an
optional remedial action can be taken to optimize the
link topology by sending an Advise message (marked
by 3 in Figure 10) from w to each node y* ∈ V(k), with
a probability, to check if d(y*, z) < d(y*, w).

Figure 9. The Acquaint messages from

boundary nodes to δδδδ-nodes

x y

[z]

[z]

[w]

w
z

(1)
(2)

y*
(3) [z]

Figure 10. The Acquaint, Hello, and Advise

messages in creating an I-link

Figure 11. I-links created at level k + 1 by

messaging in a level-k fabric

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

7

2.4. Soft States and Fault Tolerance

A node constantly probes other nodes via I-links
and F-links, to detect node failures. All entries in
variable I(k), S(k, δ), F(k, δ), and V(k), as well as the
object pointers, are maintained in soft states. An entry
expires if it has not been renewed by a timeout. If an
entry x ∈ S(k, δ) expires where x = F(k, δ) for some k
and δ, then F(k, δ) must be updated by the new nearest
node in S(k, δ) \ {x}, which may change other I-links
and F-links. The timeout should be selected carefully
to achieve high performance in applications. The ideal
soft-state timeout, regarding the overhead of renewal
and the timeliness of failure detection, may be twice as
long as the renewal period.

Using soft states in the routing tables improves fault
tolerance, and significantly reduces the overhead when
a GIN overlay is to be partitioned if two organizations
terminate their affiliating-relationship, e.g. for contract
expiration. Then, an object pointer to an object at a no-
longer-affiliated organization can easily be removed by
timeout since it will not be renewed any more.

3. Analysis Results

Theorem 1 (Resilience) Given that the admin links
are created such that the level-1 fabric is a connected
graph, all fabrics become connected graphs.�

Theorem 2 (Fabrics) With n nodes, there are up to
2n – 1 fabrics maintained in GIN.�

Theorem 3 (Memory Usage) Assume that there are
n nodes with

�
(n) objects and each node has

�
(1)

admin links. Then, the average routing table size per
node is

�
(log n) with high probability.�

Theorem 4 (Merging Complexity) A merging of
two GINs with n1 and n2 nodes, and

�
(n1) and

�
(n2)

objects, respectively, requires
�

(n1) total messages on
average with high probability, as n1 ≤ n2 and n2 =

�
(n1).

However, if instead n1 << n2, a merging requires Ο (n1

log n2) messages.�
Theorem 5 (Routing Efficiency) The forwarding

path of a query has a
�

(1) latency stretch with high
probability.�

Consider that a node y issues a query for an OID φ,
and the host of an object X with id(X) = φ replies to y,
with a latency L. Then, the stretch of the access path
from y to X is defined as

))(,(2 Xhostyd

L

×
,

where L is the roundtrip time, and the processing time
for host(X) to access X is ignored. Thus, the stretch is a
ratio that indicates the efficiency in forwarding a
query—a smaller stretch indicates higher efficiency.

Referring to Figure 12, the publishing path and the
querying path in GIN would overlap with high
probability at a node at a network distance that is
comparable to the distance between the query issuer
and the host of the queried object. Since the
overlapping node has a copy of the object pointer, the
query is immediately sent to the host address so that
the overall latency in forwarding this query is also
comparable to the network distance between the query
issuer and the host, that is, it has a

�
(1) stretch, with

high probability. This routing scheme is similar to the
PRR scheme of which the achieved

�
(1) stretch has

been formally proven in [19].

4. Simulation Results

Refer to Figure 13 for three underlying networks in
our simulations where the participating nodes are
initially clustered in the local area networks (LAN’s),
and extra admin links will be created between LAN’s.
The number annotating an arc between two LAN’s is
the network distance (i.e. the propagation delay of any
message) between those two LAN’s. The network
distance between any two nodes in different LAN’s is

HostIssuer

Root Publishing path
Querying path

HostIssuer

Root Publishing path
Querying path

HostIssuer

Root Publishing path
Querying path

Figure 12. Overlapping of the querying and

publishing paths in GIN

2 8 9

1

0

5 7

6

4

3 100
1000

300

200

200

500

800

1000

300

100 100

200

2

4 1

0

3

100

500 1000

200

1000

1 4

2

0 3

200
1000

300
5 6 8

7 9
100 500 200

1000
500

600

300

500 100

400

(a)

(b)

(c)

Figure 13. Underlying network topologies

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

8

4 ms plus the shortest path delay between their LAN’s.
In addition, the network distance between any two
nodes in the same LAN is 2 ms. We assume that each
node spends 1 ms at processing each GIN message, or
accessing a locally registered object (as a host handling
an incoming query for the object). In all simulations, b
= 1 or 4, l = 32, and the Advise probability = 1/3.

4.1. Merging Complexity

We design two separate simulations on the same
underlying network topology in Figure 13(a) but with
different chronological orders in creating the admin
links such that the merging conditions are different. In
the first simulation, two GINs in similar sizes merge
into one. In the second simulation, a smaller GIN (with
fewer nodes) merges with a larger GIN (with more
nodes). Note that the total numbers of all nodes (in the
two merging GINs) in both simulations will be equal.
We set b = 1 in both simulations.

Here we describe the first simulation. Initially at 0
sec, the simulation generates 300 nodes each of which
is placed in a randomly selected LAN (i.e. the local
cluster). Then, each node randomly chooses another
node in the same LAN to create an admin link with that
node. Then, at 1 sec, for each pair of LAN’s connected
in a solid line, we randomly choose one node from
each LAN, and create an admin link between those two
nodes. As such, two GINs are initially created, while
all generated messages are recorded. In the simulation,
no messages are generated after 20 seconds—i.e. the
routing table contents at all nodes have converged and
become stable by 20 sec.

Then, we create two extra admin links: One is to
make the two GIN overlays merge, while the other is to
later create a loop in the merged GIN overlay. That is,
at 50 second, we first create an admin link between two
nodes that are randomly selected from LAN 0 and 6,
respectively. Then, at 100 second, we create the second
admin link between two nodes that are randomly
selected from LAN 3 and 4, respectively.

Figure 14 shows the simulation result in a three-
dimensional diagram where the x-axis is the time, the
y-axis is the level with which a message is associated,
and the z-axis is the number of generated messages in
each 1-second interval on a level. We categorize the
generated messages by different levels to show the
recursive behavior of our algorithm. Clearly, creating
an admin link (i.e. an I-link on level 1) results in a
sequence of messages that climb up the levels—as the
F-links are updated at a level, some I-links are created
at the higher level and trigger more updates of the F-
links there.

Now, we describe the second simulation where two
GINs in different sizes merge. On the same underlying

network topology and with the same number of nodes
as in the previous simulation, the admin links in this
simulation are created in a different chronological
order. A larger GIN is initialized with the nodes in all
LAN’s excluding LAN 8, while a smaller GIN is
initialized with only those nodes in LAN 8. In addition,
the admin links between LAN’s are created at 1 sec
except that the admin link between LAN 2 and 8 will
be created at 50 sec. It is observed that the routing table
contents converge by 35 sec (compared to 20 sec in the
previous simulation) since the larger GIN has a longer
network diameter; then, the admin link created last at
50 sec makes the two different-sized GINs merge. Note
that we do not create a loop in this simulation.

Figure 15 shows the second simulation result in a 3-
dimensional diagram similar to Figure 14. Compared to
the previous simulation, the total number of messages
generated for the created admin link at 50 sec is
significantly lower. We conclude that the number of
messages generated for merging two GINs depends on
the number of nodes in the smaller GIN. However, the
convergence of the merging still takes approximately
38 seconds in Figure 14 and 30 seconds in Figure 15.
Thus, the convergence time depends on the underlying

50
60

70
80

90
100

110
120

130
140

1

32

0

50

100

150

200

M
essag

es (#)

Time (Sec)

level

Figure 14. The simulation result of merging

two GINs and creating a loop

50
60

70
80

90
100

1

32

0

50

100

150

200

M
essag

es (#)

Time (Sec)

level

Figure 15. The simulation result of merging

two GINs in different sizes

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

9

network diameter (similar in these two simulations) for
message propagation delays.

In addition, we categorize the messages by type, and
observe that the majority of the generated messages are
Advertise, approximately 60%.

4.2. Routing Table Size

Here, we show the simulation results of the average
routing table size that is dynamically tracked at run
time, with b = 4 and l = 32, for two cases n = 100 and n
= 300, where n is the total number of nodes. We use
the underlying network topology in Figure 13(a) for n
= 300, and Figure 13(b) for n = 100. In addition to
these two simulations, we design a set of simulations

where n is a variable chosen in a range from 150 to 450,
with b = 4, using the underlying network topology
shown in Figure 13(c). In those simulations, we
initialize the nodes and the admin links at 0 sec, and
then we record the cardinalities (or sizes) of all I(k),
V(k), and S(k, δ) variables at run time.

The results of the first 2 simulations are shown in
Figure 16 and the last in Figure 17. Note that the I-
series is for the average number of entries in all I(k)’s
variables per node, recorded at the end of each 1-
second interval. Similarly, the V-series is for all V(k)’s
per node, and the S-series is for all S(k, δ)’s per node.
In Figure 16, since no more messages are generated
after 8 sec in both cases, the routing table contents
converge and the sizes become stable. It can be seen
that as n increases 200% (from 100 to 300), the
average number of entries in all these variables
increases only 36% (approximately from 53 to 72). It is
easier to see in Figure 17 (the x-axis on logarithmic
scale) that the average routing table size increases only
logarithmically with n.

4.3. Stretch

Then, we use the underlying network topology in
Figure 13(c) and design two simulations (with b = 1
and b = 4, respectively), both with n = 300, to observe

0

10

20

30

40

50

60

70

80

S
ize (#en

try)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Sec)

n = 100

S
V
I

0

10

20

30

40

50

60

70

80

S
ize (#en

try)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (Sec)

n = 300

S
V
I

Figure 16. Simulation results of the runtime
convergence of average routing table size

0

10

20

30

40

50

60

70

80

90

100

100 1000

n

S
ize (#entry)

I
V
S
I + V + S

Figure 17. Simulation results of the average

routing table size for variable n

b = 1

0

20

40

60

80

100

1 3 5 7 9

Stretch

C
D

F
 (

%
)

0
1
4
5

b = 4

0

20

40

60

80

100

1 3 5 7 9

Stretch

C
D

F
 (

%
)

0
1
4
5

Figure 18. Simulation results of query

stretches with b = 1 and b = 4

In Proceedings of IEEE CollaborateCom 2005, San Jose, California, U.S., December 2005

10

the stretch of the routing latency in processing queries
for objects. Each simulation has all nodes and admin
links initially generated at 0 sec. Then, four objects are
registered, each with unique OID’s, and the host of
each object is randomly chosen from the nodes in LAN
0, 1, 4, and 5, respectively. For each object X, 200
nodes issue a query for id(X), where 20 nodes per LAN
are randomly selected to do so.

The simulation results are shown in Figure 18. The
cumulative distribution functions (CDFs) of the latency
stretches for those four objects are plotted separately.
Approximately 90% stretches are less than 2.0 as b = 1,
and 80% as b = 4. We conclude that the access latency
to an object has a

�
(1) stretch with high probability.

5. Conclusion

We have proposed GIN for collaborative nodes to
share objects across affiliated organizations, allowing
their local namespaces to merge upon affiliating. It can
forward a query with an

�
(1) latency stretch with high

probability and achieve high performance. Its routing
tables are maintained in soft-states for fault tolerance,
with a scalable and efficient algorithm, and adapting to
performance updates of network distances. Thus, it has
significant new advantages for building a DHT-based
namespace for applications that will collaborate across
organizations with dynamic affiliating-relationship.

References

[1] A. Arkin, S. Askary, et al., “Web Services Business
Process Execution Language”, OASIS Specification Draft,
online at http://www.oasis-open.org/, Feb 2005.
[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, M. Walfish, “A layered naming
architecture for the Internet”, Proc. of the ACM
SIGCOMM ’04 Conf., Aug 2004.
[3] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax”, IETF RFC 3986
(STD 1), Jan 2005.
[4] D. Booth, H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris, D. Orchard, “Web Services
Architecture”, W3C Web Services Architecture Working
Group Note, documents online at http://www.w3.org/TR/ws-
arch/, Feb 2004.
[5] D. Burdett, N. Kavantzas, “WS Choreography model
overview”, W3C Working Draft, March 2004. Online at
http://www.w3.org/TR/ws-chor-model/.
[6] Gnutella.com, online at http://www.gnutella.com/.
[7] KaZaA.com, online at http://www.kazaa.com/.
[8] K. Hildrum, J. D. Kubiatowicz, S. Rao, B. Y. Zhao,
“Distributed object location in a dynamic network”, Proc. of
the ACM Symposium of Parallel Algorithms and
Architectures (SPAA) ’02, Aug 2002.

[9] B. Karp, S. Ratnasamy, S. Rhea, S. Shenker, “Spurring
adoption of DHTs with OpenHash, a public DHT service”,
Proc. of the 3rd International Workshop on Peer-to-Peer
Systems (IPTPS ’04), Feb 2004.
[10] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H.
Balakrishnan, “Chord: a scalable peer-to-peer lookup service
for Internet applications”, Proc. of the ACM SIGCOMM ’01
Conf., Aug 2001.
[11] M. Mealling, “Dynamic Delegation Discovery System
(DDDS) - Part 4: The URI resolution application”, IETF
RFC 3404 (STD 1), Sep 2000.
[12] Microsoft, Inc., Distributed Component Object Model
(DCOM), documents online at http://msdn.microsoft.com/.
[13] R. Moats, “URN syntax”, IETF RFC 2141 (STD 1),
May 1997.
[14] Napster.com, online at http://www.napster.com/.
[15] Object Management Group, Inc., “Common Object
Request Broker Architecture (CORBA)”, documents online
at http://www.omg.org/.
[16] J. Pang, J. Hendricks, A. Akella, R. de Prisoco, B.
Maggs, S. Seshan, “Availability, usage, and deployment
characteristics of the Domain Name System”, Proc. of the
ACM Internet Measurement Conf. (IMC) ’04, Oct 2004.
[17] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, L. Zhang,
“Impact of configuration errors on DNS robustness”, Proc. of
the ACM SIGCOMM ’04 Conf., Aug 2004.
[18] K. Park, V. Pai, L. Peterson, “CoDNS: Improving DNS
performance and reliability via cooperative lookups”, Proc.
of the 6th USENIX Symposium on Operating Systems Design
& Implementation (OSDI ’04), Dec 2004.
[19] G. Plaxton, R. Rajaraman, A. W. Richa, “Accessing
nearby copies of replicated objects in a distributed
environment”, Proc. of the ACM Symposium of Parallel
Algorithms and Architectures (SPAA) ’97, Jun 1997.
[20] V. Ramasubramanian, E. G. Sirer, “Beehive: Exploiting
power law query distributions for O(1) lookup performance
in peer to peer overlays”, Proc. of the 1st USENIX Symposium
on Networked Systems Design and Implementation
(NSDI ’04), Mar 2004.
[21] V. Ramasubramanian, E. G. Sirer, “The design and
implementation of a next generation name service for the
Internet”, Proc. of the ACM SIGCOMM ’04 Conf., Sep 2004.
[22] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker, “A scalable content-addressable network”, Proc. of
the ACM SIGCOMM ’01 Conf., Aug 2001.
[23] A. Rowstron, P. Druschel, “Pastry: scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems”, Proc. of the IFIP/ACM Int’l Conf. On
Distributed Systems Platforms, Heidelberg, pp. 329-350, Nov
12-16, 2001.
[24] StreamCast Networks, Inc., online at
http://www.streamcastnetworks.com/.
[25] V. Ungureanu, “Using certified policies to regulate E-
commerce Transactions”, ACM Trans. on Internet
Technology, Vol. 5, No. 1, pp 129-153, Feb 2005.

