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ABSTRACT
We propose Multi-modal Language Models (MLMs), which
adapt latent variable models for text document analysis to
modeling co-occurrence relationships in multi-modal data.
In this paper, we focus on the application of MLMs to in-
dexing slide and spoken text associated with lecture videos,
and subsequently employ a multi-modal probabilistic rank-
ing function for lecture video retrieval. The MLM achieves
highly competitive results against well established retrieval
methods such as the Vector Space Model and Probabilis-
tic Latent Semantic Analysis. Retrieval performance with
MLMs is also shown to improve with the quality of the avail-
able extracted spoken text.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval

General Terms
Algorithms

Keywords
Multi-modal retrieval, latent variable modeling, multi-modal
probabilistic ranking

1. INTRODUCTION
The continued growth in user generated video on the in-

ternet has exacerbated the need for tools to facilitate con-
tent search and management. A quickly growing sector of
internet-distributed content is expository or “how-to” video,
a genre which includes lecture videos from online courses,
presentations from conferences and seminars, and more gen-
eral demonstration and tutorial videos. These videos typi-
cally include multi-modal data. For example, a video of a
speaker delivering a presentation has both the speech and
the slide modalities.
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Figure 1: The left panel shows the traditional word-
document matrix that is modeled using PLSA and
LDA. The middle panel shows the matrix processed
in word-topic modeling [5], where the co-occurrence
of a word w and its neighborhood words O(w) is mod-
eled. The right panel shows the multi-modal mod-
ification we propose in which the co-occurrence of
slide words and spoken words are modeled.

Lecture videos are relatively amenable to content-based
indexing. Slides provide the videos with both a temporal
and topical structure, and systems can exploit the slide text
to enable search functionality inside the videos [1, 6, 13].

Retrieval systems have also extracted text from the spoken
audio in lecture videos [8] using automatic speech recogni-
tion (ASR). Errors in ASR are commonplace due to poor au-
dio recording quality or acoustic mismatch and can diminish
the spoken text’s utility for video retrieval. In some cases,
spoken text is available as manually created closed captions
(CC). While slides typically contain sparse and discrimina-
tive words, speech is usually voluminous, improvised, and
comprised largely of generic terms.

In this work, we model the co-occurrence of words used in
videos as spoken and slide text. The motivation is to effec-
tively combine the sparse and discriminative slide text with
the voluminous and generic spoken text to achieve better
lecture video retrieval. Our contributions are:

• We propose Multi-modal Language Models (MLMs) to
represent the co-occurrences of multi-modal data using
latent variable modeling.

• We propose a multi-modal probabilistic ranking func-
tion, for use with the MLMs for lecture video retrieval.

• We introduce the Google I/O Dataset, a new dataset
for studying multi-modal lecture video retrieval.



2. RELATED WORK
The Vector Space Model (VSM) for information retrieval

treats documents as “bags” of words [10] and drives state-of-
the-art text search systems including Lucene1. Represent-
ing documents as vectors leads naturally to modeling the
document corpus as a matrix. Figure 1(a) depicts such a
matrix in which the rows and columns are indexed by the
words and documents respectively. To model inter-word re-
lationships, the word-document matrix in Figure 1(a) can
be processed to build latent variable models. Both Prob-
abilistic Latent Semantic Analysis (PLSA) [7] and Latent
Dirichlet allocation (LDA) [4] model documents using a dis-
tribution over latent variables (topics) to capture relations
between co-occurring words. In [5], Chen proposed Word
Topic Models (WTMs) which explore word co-occurrences
locally within a document, as shown in the word-word ma-
trix of Figure 1(b). The WTMs implement latent variable
models on a finer sub-document level, thus demonstrating
improved performance over conventional PLSA. While [5]
constructs latent topic models for (unimodal) text docu-
ments, our MLMs are learned from multi-modal text as in
Figure 1(c) and detailed below.

Researchers have in turn applied latent variable models
to multi-modal domains. Many prior works explore the re-
lation between images’ visual features and their text anno-
tations using variants of LDA and PLSA. Barnard et al. [2]
developed multi-modal LDA to jointly model a common un-
derlying topic distribution on image region descriptors and
annotation words (i.e., tags). Blei and Jordan proposed Cor-
respondence LDA (Corr-LDA) [3], which models a process
that first generates region descriptors followed by genera-
tion of words (each word is linked to one of the image re-
gions). [11] develops a less constricted multi-modal LDA
model allowing for different latent variable distributions in
each modality and using regression to more flexibly capture
inter-modality relationships.

[9] proposes multi-layer PLSA to model visual features
and tags. The multi-layer PLSA introduces two layers of la-
tent variables (one being common to the two modalities) into
the joint model, and does not require that tags associated
with images necessarily describe the visual content. Rasi-
wasia et al. [12] use canonical correlation analysis (CCA)
to model multi-modal data by jointly performing dimension
reduction across the two modalities of words and pictures.
The intermediate subspace search of CCA is suited for a
scenario when there is no natural correspondence between
representations in different modalities.

In this work, we build generative models for individual
spoken words and slide words, which we call Multi-modal
Language Models (MLMs). The MLMs are also learned us-
ing Expectation Maximization (EM). In contrast to conven-
tional PLSA or LDA methods which implement latent vari-
able models on the documents of the corpus, the training of
MLMs is based on multi-modal word-word co-occurrences.
This more direct formulation greatly simplifies both model
training and retrieval.

3. MULTI-MODAL LANGUAGE MODELS
Multi-modal Language Models (MLMs) are a latent vari-

able model learned from the multi-modal data matrix of Fig-
ure 1(c). The matrix entries indicate the number of times a

1http://lucene.apache.org
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Figure 2: The graphical model of our proposed
MLM. The relation between each slide word and
spoken word is described by a set of latent vari-
ables. The model parameters p(z|wsl) and p(wsp|z)
can be estimated by the EM algorithm, while the
prior of p(wsl) is directly obtained from the corpus.

spoken word and a slide word co-occur in the same video’s
transcripts. A set of latent variables models the essential
relationships between slide words and spoken words. Fol-
lowing the graphical model in Figure 2, the joint probability
of a slide word wsl and a spoken word wsp is given by:

p(wsp, wsl) =
∑
z

p(wsp|z)p(z|wsl)p(wsl) . (1)

We use EM to maximize the likelihood of the data co-
occurrence matrix in Figure 1(c). Following the derivations
in [7], the EM iterations are described below.

E-Step: Update

p(z|wsp, wsl) =
p(wsp|z)p(z|wsl)∑
z p(wsp|z)p(z|wsl)

, (2)

M-Step: Update

p(wsp|z) =

∑
wsl

#(wsl, wsp)p(z|wsl, wsp)∑
wsl,wsp

#(wsl, wsp)p(z|wsl, wsp)
,

(3)

p(z|wsl) =

∑
wsp

#(wsl, wsp)p(z|wsl, wsp)

#(wsl)
.

(4)

The result of EM training is the MLM for the slide and
spoken words in the corpus following (1).

4. RETRIEVAL RANKING FUNCTION
Using the MLM, we propose a probabilistic multi-modal

ranking function for lecture video retrieval. Each lecture
video in the corpus is represented by its associated slide
text transcript Tsl and spoken text transcript Tsp. We can
utilize p(z|wsp, wsl) from (2) to compute the video specific
latent variable distribution,

p(z|(Tsl, Tsp)) =
∑

(wsl,wsp)∈(Tsl,Tsp)

α((wsp, wsl), (Tsp, Tsl))·

p(z|wsp, wsl) , (5)

where α((wsp, wsl), (Tsp, Tsl)) represents the co-occurrence
frequency of the word pair (wsl, wsp) observed in the specific
video’s transcripts (Tsp, Tsl).

For retrieval, denote the user query text as Tq. We esti-
mate the query-video relevance by the conditional probabil-
ity of Tq given (Tsl, Tsp) from the video:

p(Tq|(Tsl, Tsp)) =
∏

wq∈Tq

∑
z

p(wq|z)p(z|(Tsl, Tsp)) . (6)
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Here, p(z|(Tsl, Tsp)) is calculated as in (5), but p(wq|z) is
unknown. This reflects the intention gap between users’
query language model for expressing information needs and
the system’s document model. It is reasonable to assume
that the query words obey a similar distribution to the
slide words or spoken words in the video corpus. There-
fore, (6) can be rewritten, replacing p(wq|z) with p(wsl|z)
and p(wsp|z) respectively:

psl(Tq|(Tsl, Tsp)) =
∏

wsl∈Tq

∑
z

p(wsl|z)p(z|(Tsl, Tsp)) , (7)

psp(Tq|(Tsl, Tsp)) =
∏

wsp∈Tq

∑
z

p(wsp|z)p(z|(Tsl, Tsp)) . (8)

We multiply psl(Tq|(Tsl, Tsp)) and psp(Tq|(Tsl, Tsp)) to de-
fine the final score for ranking videos given the query Tq:

p̂(Tq|(Tsl, Tsp)) = psl(Tq|(Tsl, Tsp))psp(Tq|(Tsl, Tsp)) . (9)

A notable implementation detail is that the conditional
probability p(z|(Tsl, Tsp)) in (7) and (8) is query-independent.
Therefore, it can be pre-computed once per video and stored
to accelerate processing at query time.

5. EXPERIMENTS

5.1 The Google I/O Dataset 2

To validate our multi-modal video retrieval scheme, we
assembled a dataset of 209 presentation videos from Google
I/O conferences in the years 2010-2012. The lengths of the
videos range from 40 to 60 minutes. By crawling the con-
ference web sites, we collected the following data for each
presentation video:

• Slide text from PPT, PDF, HTML5, etc. (PPT)

• Closed-caption speech transcripts (CC)

• OCR extracted slide text from video frames (OCR)

• ASR speech transcripts from YouTube (ASR)

For automatic slide text extraction (OCR), we first match
slide frames in the videos to the PPT slides using the system
in [-]3. We then use Microsoft Office document OCR to
extract slide text from the matching video frames. The ASR
transcript is downloaded from YouTube.

Automatically extracted OCR and ASR data are noisy
versions of the actual slide and spoken text. To filter recogni-
tion errors, we discard OCR and ASR transcript words that
appear only once in the corpus and are not in the english
dictionary. We empirically verified that this filtering proce-
dure does not hurt performance, while significantly reducing
computation time. The lexicon from the closed caption tran-
scripts contains 22,786 unique words, while the lexicon for
the PPT transcripts contains 17,013 words. After filtering,
we retain 29,279 and 36,118 words for the ASR and OCR
lexicons, respectively.

Based on the talks’ descriptions on the conference web
sites, 275 queries were manually generated to simulate user

2The Google I/O dataset will be released upon acceptance
of this paper.
3Anonymized for double blind submission/review.

queries. The queries are technical terms such as“listview an-
droid widget”and“NFC reader/writer API”. Manual ground
truth relevance judgments were compiled for all 275 queries
across all 209 videos by one of the authors. We use mean av-
erage precision (mAP) [10] as the evaluation metric through-
out our experiments.

5.2 Baseline methods
We compare using MLMs for lecture video retrieval with

two well established methods: VSM and PLSA. The Lucene
documentation 4 or [10] describe VSM retrieval. For re-
trieval using PLSA, we used the following ranking function
which is similar to (6):

p(Tq|D) =
∏

wq∈Tq

∑
z

p(wq|z)p(z|D) , (10)

where D denotes a video. This ranking function performed
better than the folded-in latent space retrieval described in
[7]. For each text modality we trained a 200 dimensional
PLSA model.

For multi-modal video retrieval, we evaluate both early
and late fusion strategies for both VSM and PLSA. For early
fusion, the available slide and spoken text is concatenated
to represent each video prior to indexing. For late fusion,
retrieval scores are first computed independently for slide
and spoken data, and then fused in a weighted sum:

Slate fusion = λSsl + (1− λ)Ssp . (11)

Ssl and Ssp represent the retrieval scores of slide and spoken
text respectively, and λ ∈ [0, 1] is optimized via two-fold
cross validation.

5.3 Retrieval with error-free text data
The first set of retrieval experiments uses CC spoken text

and PPT slide text, i.e., model training and video retrieval
use error-free slide and spoken text transcripts. Table 1
shows the mAPs for the MLM trained with 200 latent vari-
ables, compared to the early and late fusion results from
VSM, PLSA. The MLM significantly outperforms the sec-
ond best performing method of VSM late fusion, with sta-
tistical significance at 99% confidence interval according to
the paired t-test.

Table 1: Multi-modal retrieval performance using
PPT and CC text on the Google I/O corpus.

mAP@N
N=5 N=10 N=209

VSM early fusion 0.863 0.829 0.777
VSM late fusion 0.869 0.845 0.790

PLSA early fusion 0.858 0.830 0.767
PLSA late fusion 0.806 0.793 0.732

MLM (ours) 0.902 0.875 0.830

5.4 Retrieval with noisy text data
We repeat the experiments using the automatically ex-

tracted text from OCR and ASR to represent each video.

4http://lucene.apache.org/core/4_0_0/core/org/
apache/lucene/search/similarities/TFIDFSimilarity.
html
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http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html


Here, noisy OCR and ASR text data are employed to train
the MLMs and the retrieval mAPs are tabulated in Table
2. While there is no performance gain as in the noise-free
case (PDF and CC), the MLM achieves statistically indistin-
guishable performance to the competitive VSM late fusion
baseline (paired t-test: t = 0.672, p=0.502).

Table 2: Multi-modal retrieval performance using
OCR and ASR text on the Google I/O corpus.

mAP@N
N=5 N=10 N=209

VSM early fusion 0.807 0.780 0.723
VSM late fusion 0.829 0.811 0.747

PLSA early fusion 0.807 0.785 0.708
PLSA late fusion 0.751 0.731 0.647

MLM (ours) 0.822 0.805 0.734

5.5 Impact of noise on MLM performance
The results above show that the use of noisy slide and

spoken text can diminish the effectiveness of MLMs for lec-
ture video retrieval. To study the degradation of retrieval
performance due to noise in each data modality, we per-
formed experiments using VSM on unimodal data (recall
that we have 4 types of unimodal data: PPT, CC, OCR,
ASR). The full unimodal VSM results are omitted here for
brevity, but retrieval using OCR text performs on par with
retrieval using PPT text (mAP@5 for OCR retrieval is 0.01
lower than PPT), whereas retrieval using ASR text is sig-
nificantly worse than using CC text (mAP@5 for ASR re-
trieval is 0.206 lower than CC). We thus hypothesize that
poor quality ASR degrades retrieval performance of MLMs
trained using OCR-ASR word pairs.

To assess this hypothesis, we divide the 275 queries into
two sets, according to whether the query’s retrieval Average
Precision at the top-5 candidates (AP@5, using noisy text
data Tsl = TOCR and Tsp = TASR) for MLM outperforms
that of the VSM late fusion baseline. Set 1 consists of those
queries for which the MLM outperforms VSM late fusion,
while set 2 contains queries for which MLM underperforms
VSM late fusion. We next examine unimodal VSM retrieval
performance in terms of mAP@5 on the two query sets, using
CC and using ASR. On set 1 queries, the mAP@5 for VSM
using CC is 0.149 higher than VSM using ASR. However,
on set 2 queries, the mAP@5 difference between VSM using
CC and using ASR is 0.227. In contrast, the analogous
mAP@5 difference for PPT compared to OCR is 0.044 and
-0.005 for set 1 and set 2, respectively. We thus observe a far
greater performance gap between the sets using spoken text
rather than slide text for retrieval. Additionally, ASR text
quality is relatively low on the set 2 queries for which MLM
retrieval performance is worse. Therefore, when the quality
of automatically extracted ASR text is better, we anticipate
the MLM will add greater value for retrieval.

6. CONCLUSIONS
We have proposed Multi-modal Language Models and a

probabilistic ranking function for multi-modal video retrieval.
We introduce a new dataset, the Google I/O dataset, that
contains multi-modal lecture videos and text queries with

ground truth relevance judgements. When using error-free
PPT and CC transcripts for multi-modal retrieval, MLM
significantly outperforms several baseline schemes using well
established methods of VSM and PLSA. When only the au-
tomatically extracted OCR and ASR noisy text are avail-
able, our model shows similar performance to the best per-
forming benchmark method, where the degradation of our
model reflects the noise in the ASR data.
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