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Abstract 
Augmented Paper (AP) is an important area of Augmented Reali-

ty (AR). Many AP systems rely on visual features for paper doc-

ument identification. Although promising, these systems can hard-

ly support large sets of documents (i.e. one million documents) 

because of the high memory and time cost in handling high-

dimensional features. On the other hand, general large-scale im-

age identification techniques are not well customized to AP, cost-

ing unnecessarily more resource to achieve the identification ac-

curacy required by AP. 

To address this mismatching between AP and image identification 

techniques, we propose a novel large-scale image identification 

technique well geared to AP. At its core is a geometric verifica-

tion scheme based on Minimum visual-word Correspondence Set 

(MICSs). MICS is a set of visual word (i.e. quantized visual fea-

ture) correspondences, each of which contains a minimum number 

of correspondences that are sufficient for deriving a transforma-

tion hypothesis between a captured document image and an in-

dexed image. Our method selects appropriate MICSs to vote in a 

Hough space of transformation parameters, and uses a robust 

dense region detection algorithm to locate the possible transfor-

mation models in the space.  The models are then utilized to veri-

fy all the visual word correspondence to precisely identify the 

matching indexed image.  

By taking advantage of unique geometric constraints in AP, our 

method can significantly reduce the time and memory cost while 

achieving high accuracy. As showed in evaluation with two AP 

systems called FACT and EMM, over a dataset with 1M+ images, 

our method achieves 100% identification accuracy and 0.67% 

registration error for FACT; For EMM, our method outperforms 

the state-of-the-art image identification approach by achieving 4% 

improvements in detection rate and almost perfect precision, 

while saving 40% and 70% memory and time cost. 

Categories and Subject Descriptors 
I.3.8 [Computer Graphics]: Applications; I.5.1 [Pattern Recog-

nition]: Models – Geometric; I.5.3 [Pattern Recognition]: Ap-

plications – Computer Vision; H.3.3 [Information Storage and 

Retrieval]: Information Search and Retrieval – Information Fil-

tering, Search Process.   
 

Keywords: Minimum Correspondence Set, augment paper, im-

age identification, large-scale, full geometric verification, Hough 

transform.  

 

1. Introduction 
 

Although paper documents is still one of the most widely used 

devices for viewing information, it lacks computational capability 

(e.g. Web search and keyword finding) and cannot render dynam-

ic information. On the other hand, computers and mobile devices 

(e.g. cell phones) are increasingly used to provide rich GUI inte-

ractions and conveniently access dynamic information. But they 

hardly match paper’s display quality, tangibility, flexibility in 

spatial organization and robustness. To combine the complemen-

tary advantages of the two media, Augmented Paper (AP) has 

become an active research area [8-17].  

Similar to other Augmented Reality (AR) applications, a typical 

approach for Augmented Paper consists of three major steps: 1) 

identifying a paper document using its camera-captured images, 

2) building precise coordinates transforms between the camera, 

display and document coordinates, and 3) overlaying the asso-

ciated digital information on the paper document via a see-

through Magic Lens [12, 13, 23] or projector [11, 14]. The first 

step, document identification, is a key step for AP. For this step, 

many existing systems such as FACT [11], MapSnapper [15] and 

MapLens [23] rely on the matching of pixel-level visual features 

of the document content, as this approach works for generic doc-

ument types (e.g. text, photos and graphics) and does not have the 

visual obtrusiveness and layout interference issues of barcodes. 

However, matching raw high dimensional features (e.g. 128 di-

mensions for SIFT features [1]) incur a large amount of memory 

and time. As a result, these systems can only handle small datasets 

with hundreds to thousands of documents, which are not sufficient 

for large-scale public use, e.g. linking dynamic media or provid-

 
Figure 2. An illustration of MICS based Model Estimation 

                                                               

                                                                 

Figure 1. Interface of an Augmented Paper system called FACT. 

(1)  Hardware configuration, (2) Projector-highlighted words on 

paper for fine-grained interaction with the document content. 
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ing digital interactions for all books in a library, all papers of 

ACM conferences or city-scale advertising leaflets.  

On the other hand, the available large-scale image identification 

methods usually aim at applications in general object search [3, 4] 

and near-/partial-duplicate detection [2], and focus on addressing 

possible image variations in these applications. For instance, iden-

tification methods for general object search needs to tackle 3D 

object deformations or 3D perspective changes, while methods for 

near-/partial-duplicate detection has to tackle changes from exten-

sive digital editing on an original image. However, without care-

fully analyzing particular geometric changes and constraints in 

AP applications, these methods cost unnecessarily more memory 

and time to achieve a satisfactory accuracy. Therefore, simply 

applying these general methods to Augmented Paper does not 

work well.   

In this paper, we present a novel document identification method 

well adapted to Augmented Paper. In particular, we propose a 

verification scheme based on the concept of Minimum visual-

word (i.e. quantized visual feature) Correspondence Set (MICSs). 

MICS is a set of visual-word correspondences (Figure 2(a)), each 

of which contains a minimum number of correspondences that are 

sufficient for deriving a transformation hypothesis between a 

query image and an indexed image. For instance, a MICS with 2 

correspondences can be used for a Rotation/Scaling/Translation 

(RST) coordinate transformation and one with 3 correspondences 

is needed for an affine transformation. 

We first use a filtering algorithm to choose an appropriate set of 

MICSs, each of which is used to compute a transformation hypo-

thesis (Figure 2(b)). The hypotheses are then projected into a 

Hough transform space, where we adopt a dense region detection 

algorithm to estimate a precise transform model (Figure 2(c)). 

Based on the estimated model, we verify all the visual-word cor-

respondences and give a score for the indexed image. Among all 

the indexed images, the one with highest scores is taken as the 

matched image for the query image.   

Our method takes advantage of two geometric constraints which 

are unique in AP. First, we notice that paper documents are usual-

ly flat, and orthogonal to the camera (see Figure 1 (1) and Figure 

7 (1)). Thus geometric changes between a captured image and its 

matched indexed image can be well approximated by linear trans-

formation, i.e. RST and affine transformation. With this approxi-

mation we can improve the robustness and efficiency of Hough-

based model estimation, which performs poorly for more complex 

perspective or nonlinear transformation. 

Second, unlike near-/partial-duplicate image detection [2], AP 

systems usually index all document content that a user may cap-

ture for query, and thus features of a query image have almost 

equal probability to be matched to features of its indexed image. 

Accordingly, we can safely select a small subset of correspon-

dences for MICS generation and model estimation, which greatly 

reduces the time and memory cost without sacrificing much accu-

racy. 

We integrated our technique in three AP systems and ran experi-

ments on 1M+ indexed images. Experimental results show that 

our proposed method can achieve more than 95% detection rate, 

over 99.2% precision and less than 0.67% registration offset. 

Comparing to state-of-the-art method hamming embedding [3] 

plus RASNAC [7] re-ranking, our method exceeds it by achieving 

4% better detection rate and almost perfect precision. Meanwhile, 

our method costs 40% less memory and 70% less time. 

The rest of the paper is organized as follows: we first reviews 

related work in Section 2, followed by the architecture of a typical 

augmented paper system and requirements on document identifi-

cation techniques in Section 3. Then in Section 4 we present tech-

nique details of the proposed scheme. We introduce three AP 

systems in Section 5 and report evaluation experiments in Section 

6. Finally, Section 7 concludes the paper with future work. 

 

2. Related Work 
 

Our work falls in the general category of augmented paper, which 
attempts to bridge the gap between paper and the digital world. 
The research can be traced back to pioneering systems like Digital 
Desk [14], which augments paper with digital video projected 
from overhead. EMM [8, 9], HotPaper [15] and Mobile Retriever 
[16] facilitate retrieving multimedia information/annotations asso-
ciated to a paper document and display them on a cell phone.  
FACT [11], based on a mobile camera-projector unit, allows users 
to issue various pen gestures to select fine-grained paper docu-
ment content and apply user-specified digital operations. PAC-
ER[12, 13] adopted the idea of gesture commands and applied  
them to a camera-touch phone based paper interface.   

2.1 Image Identification in Existing AP Systems 

The aforementioned AP systems link paper document with its 

digital information through visual feature-based document identi-

fication techniques, thus no obstructive barcodes or electronic tags 

are demanded. However, due to the limitation of identification 

techniques used in these systems, the prior systems suffer from 

the following two problems. First, some systems, like Mobile 

Retriever [16], heavily rely on the text characteristics, and hence 

cannot work for document patches with graphic or figure content. 

Second, most existing systems, such as FACT [11] and EMM [8, 

9], utilize general local features, e.g. SIFT. Due to the high mem-

ory and time cost of local-feature-based image matching, these 

systems can only support small datasets with hundreds to thou-

sands of documents, which limits their impact in real life. 
  
2.2 Existing Large-Scale Image Matching Techniques 
To support large scale image sets, state-of-the-art image retrieval 
systems [2, 3, 4, 5, 6] quantize raw visual features into visual 
words and represent images with bag-of-words [5, 6] due to its 
compactness and fast matching. However, because of the quanti-
zation errors and lack of spatial information, the bag-of-words 
representation results in a large number of false visual-word cor-
respondences and hence a lower search accuracy. To address this 
problem, the systems usually apply two-stage verification: Weak 
correspondence verification followed by strong geometric verifi-
cation to boost accuracy while retaining a reasonable efficiency.  

Weak verification, exemplified by hamming embedding [3] and 
spatial coding [2], enforces matching constraints based on pre-
computed and compact information.  It is fast to compute but not 
sufficiently effective in removing all false matches, thus it is 
usually employed for pre-filtering on the first stage. To further 
improve accuracy, a costly but highly effective strong geometric 
verification scheme is further utilized on the second stage. This 
scheme estimates explicit transformation models between the 
query and index images using model fitting algorithms and then 
verifies visual-word correspondences by checking their consisten-
cy to the estimated models.  Strong geometric verification is very 
powerful in excluding false correspondences; however, model 
fitting approaches like RANSAC are too computationally expen-
sive thus it is usually only applied for the top-ranked images. 



However these methods are not optimized for AP, thus they spend 
unnecessarily more memory and time cost to achieve a satisfacto-
ry accuracy. In contrast, our method is well geared to AP by con-
sidering the special constraints in the application scenarios. 

3. System Overview and Design Requirements  

As illustrated in Figure 3, a typical AP system consists of four 
major components, namely Camera Processor, Document Iden-
tifier, Paper-Digital Coordinator and Display Processor. The 
Camera Processor captures an image of a paper document, along 
with finger or pen tip. The captured document image is then iden-
tified by the Document Identifier as one of indexed documents in 
the database. After that, the Paper-Digital Coordinator computes 
a coordinates transform between the captured image and its digital 
version.  Based on the coordinates transform, actions, e.g. pen tip 
operations, on paper document can be interpreted as equivalent 
mouse pointer manipulations on the digital version. Concurrently, 
associated digital information can also be precisely aligned with 
the paper document content and forwarded to the Display Proces-
sor for visual feedback. 

Our ultimate goal is a practical AP system that can be deployed in 
real life. Towards this goal, we set up the following requirements 
when selecting and designing supporting techniques. 
1) High identification accuracy in large datasets. Frequent 

failure of identifying a paper document either due to low 

identification accuracy or due to the limited size of datasets 

may frustrate users. For positive user experience, it is crucial 

to ensure high identification accuracy in large-scale datasets.     

2) Low registration offset: Many AP systems [11] leverage a 

projector to overlay, or “register”, visual feedbacks on paper 

documents. To facilitate precise overlaying, e.g. word level 

augmentation in FACT [11], it is critical to establish accurate 

coordinate transformation between a camera image, its 

matched digital document and the resulting projection image.  

3) Semi-real-time identification and registration: Unlike some 

AR systems which require real-time identification and regis-

tration for high-speed changing environmental conditions, 

AP systems only demand semi-real-time performance. This 

is because in AP systems a paper document usually remains 

still in hands or on the table. The paper movement normally 

occurs during page navigation and spatial arrangement, sel-

dom during a content-operation within a page. Therefore, for 

most AP systems, a semi-real-time performance is sufficient.  
 

4. MICSs-based Geometric Verification 

4.1 Overview 

We propose an efficient and robust large scale document image 

identification scheme which is built on top of a standard bag-of-

words framework: 1) locating feature points from all the images; 

2) extracting local features for each of the feature points; 3) quan-

tizing all the local features into visual words according to a pre-

trained vocabulary [6], which significantly save space by using 

only the visual word labels afterwards; 4) matching a query image 

to indexed images sharing the same visual words and ranking all 

the matched images according to the number of visual-word cor-

respondences in decreasing order; and 5) verifying correspon-

dences of the top-ranked matched images, removing false ones 

and re-ranking the top-ranked images. The last step is necessary 

as the quantization greatly degenerate the local features’ discrimi-

nability thus two features with the same visual word may be not 

really matched.      

The main contribution of this paper lies in a verification method 

which considers not only the label of the individual visual words 

but also the spatial relationship among visual words. In particular, 

our method estimates geometric transformation model based on a 

set of MICSs between a captured image and an indexed document 

image, and then removes most false visual-word correspondences 

using the estimated model.  

MICSs selection and model estimation are two key steps which 

affect the performance of efficiency and robustness. On one ex-

treme, selecting only one correct MICS (i.e. all its included cor-

respondences are correctly matched visual words) can lead to a 

correct model with minimum time cost in hypotheses computing. 

However, due to large number of noisy MICSs arising from false 

correspondences, selecting a correct MICS is quite time-

consuming. Though it can lead to a robust model but the overall 

time cost is high. On the other extreme, using all the MICSs leads 

to no selection time but the resulting model is unreliable. There-

fore, we focus on finding an optimal solution for achieving both 

efficiency and robustness. Our key idea is to first identify a subset 

of correct MICSs using Hough transform [19, 20, 21] and then 

estimate an accurate model using the identified MICSs. To further 

improve the efficiency, we pre-filter as many as possible MICSs 

that may contain false correspondences before deciding on the 

MICSs for model estimation.  

Figure 4 illustrates the workflow of the proposed scheme. It con-
sists of four major steps, as indicated in the red box: (1) creating 
MICSs by selecting sets of visual-word correspondences; (2) 
computing transformation hypotheses based on MICSs; (3) 
MICSs based model estimation in Hough space: locating a set of 
densely clustered hypotheses by our dense region detection algo-
rithm and estimating the final model by summing up the weighted 
hypotheses within the region; (4) Finally, verifying all the corres-
pondences based on the estimated model, removing outliers and 
ranking matched images according to the number of inliers to the 

 
 

Figure 3. The architecture of an Augmented Document System 

 
 

Figure 4. An overview of our method 



estimated model. We pre-determine a threshold for identifying a 
query document: if the number of inlier between the query docu-
ment and the top 1 ranked indexed document is larger than the 
threshold, we considered this query as an identified document; 
otherwise, the query is rejected as an unrecognized one.  

4.2 MICS Generation 

MICS generation contains two major steps: 1) selecting a subset 

correspondences, and 2) generating combinations of selected cor-

respondences and pre-filtering unreliable combinations (i.e. those 

are likely to contain false correspondences) by checking the scale 

and angle parameter consistency. The remaining combinations are 

used as our MICSs.  

4.2.1 Subset Correspondences Selection 

As mentioned in introduction, AP systems usually index all doc-

ument content that a user may capture for query, thus it is safe to 

select a small subset of correspondences for model estimation 

which greatly reduces the time and memory cost without sacrific-

ing much accuracy. But arbitrarily selected correspondences may 

locate closely and densely to each other on a captured document 

image (i.e. query image), leading to large estimation errors. We 

therefore address this problem by uniformly choose points on a 

query image, and select correspondences containing these points. 

In our implementation, we also assign slightly larger probability 

to be selected to points locate close to the center of a captured 

image than those reside on the margin. This is because the content 

in the center of a captured image is more likely to appear again on 

its matched indexed image. 

4.2.2 Correspondence Combinations Filtering  

After selecting subset correspondences, we generate correspon-

dences combinations, each of which contains minimum number of 

correspondences that are sufficient for computing a transforma-

tion. But many combinations may contain false correspondences, 

i.e. unreliable combinations, which affect the robustness of model 

estimation. Therefore, it is necessary to pre-filter as many these 

unreliable ones as possible beforehand.  

We observe that correct visual word correspondences are more 

likely to have consistent scale and angle parameters than incorrect 

ones. Based on this observation, we filter the unreliable combina-

tions which have inconsistent scale and angle parameters. The 

remaining combinations which pass the consistency checking are 

used as MICS for the following model estimation.  

4.3 Computing Hypotheses based on MICSs 

4.3.1 Linear Transformation 

The linear coordinate transformation between a query visual word 

at [u,v]T and its corresponding indexed visual word at [x,y]T can 

be written as: 
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 is 2 2³ non-singular matrix, [tx, ty]
T is a 2d 

translation vector.  

(1) RST transformation  

Rotation/scaling/transformation (RST) transformation is a four- 

parameter linear transformation. It is a composition of a single 

rotationq, an isotropic scaling s and two translational shifts tx and 

ty. The equation (4.3.1.1) for a RST transformation can be subs-

tantiated as 
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where 1 4 s cosm m q= = * , and 2 3 sinm m s q=- = * . A two-
correspondence MICS provides a solution for a RST transforma-
tion.   

(2) Affine transformation 

An affine transformation is a 6-parameter linear transformation. It 
is a composition of two rotations:qand f specifying angles with 
respect to x and y axis for the two scaling directions, two non-
isotropic scaling factors: 1l and 2l, and two translational shifts tx 
and ty.  The equation (4.2.1.3) for an affine transformation can be 
written as: 
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where ( )Rq and ( )Rf are rotation matrices for two rotation angles 
qand frespectively and 1l and 2lare the two scaling values. 
Each affine MICS contains 3 correspondences.  

 

4.3.2 Solving Linear Transformation 

We wish to solve the transformation parameters (m1, m2, m3, m4,  

tx, ty), so we gather the unknowns into a column vector and re-

write the equation above as follows:  
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(4.3.1.4) 

This equation shows a single MICS, with each correspondence of 

the MICS contributes two rows to the index and query MICS 

representation in eq. (4.3.1.4), respectively. We can write this 

linear system as,  

 XA U=  (4.3.1.5) 

and each MICS provides a hypothetic solution A by solving the 

corresponding normal equations,  
1 [ ]T TA X X X U-=

 
(4.3.1.6) 

4.4 MICS based Model Estimation in Hough Space 

The obtained hypotheses from the selected MICSs may be not 

correct due to noisy MICSs, thus cannot be directly used for the 

transform model estimation. Instead, we first rely on Hough trans-

form to distinguish the correct hypotheses from the noisy ones, 

and then derive the concrete transformation parameters with the 

correct hypotheses. 

The Hough transform via a voting strategy in a parameter space is 

a standard method. It first constructs a Hough space or accumula-

tor space by quantizing the full parameter space into pre-

determined size of bins, casts each hypothesis into a bin, and then 

locates peak bins which contain more than a certain number of 

hypotheses. In our case, correct MICSs lead to hypotheses clus-

tered densely together in the Hough space while noisy MICSs 

yield randomly distributed hypotheses. Therefore, we can detect 

dense regions in the space to identify correct hypotheses. 

However, there are two major limitations in a standard Hough 

transform. First, due to different errors of detected feature posi-

tions, hypotheses from correct MICSs may have different density 



in Hough space. Therefore, a pre-defined bin size cannot segment 

hypotheses of correct-MICSs from noises for all cases. If the size 

of bins is too small, true hypotheses might fall into multiple 

neighboring bins; on the other hand, if the size is too large, the 

peak bin will be polluted by many false hypotheses. Second, the 

time and space complexity of searching in a full-Hough space is 

high, which is in order of O(K1*é*Km), where m is the total 

number of parameters and Ki (1 )i m¢ ¢ is the number of bins for 

parameter i. In response to these limitations, we propose two algo-

rithms to handle flexible hypothesis density and low efficiency. 

4.4.1 Dense Region Detection 

To address the first limitation, we propose a more reliable proce-

dure, which first detects peak bins in a finely grained Hough 

space and then grows the dense region around each peak by merg-

ing neighboring bins which contain more than a certain number of 

hypotheses. Two examples are illustrated in Figure 5(a) and (b). 

One peak bin is detected (indicated by a purple box) and inserted 

into the dense region set. And then the neighbors of the dense 

region boundary are examined; those containing more than k 

votes are further inserted the dense region set (k=3 in our current 

implementation). Such region growing process iterates until no 

neighboring bin of the dense region contains enough votes. The 

final boundary of the detected dense region is denoted by the 

green lines in Figure 5(a) and (b).  Algorithm 1 presents the 

process of our dense region detection.  

We illustrate the advantages of our method by two cases that fail 

with conventional Hough transform. First, when consistent hypo-

theses distribute relatively sparsely, fine quantization may sepa-

rate them into several adjacent bins. Our scheme can re-merge 

these bins together, as shown in Figure 5(a), and hence overcome 

the over segmentation problem caused by a pre-defined fine quan-

tization strategy. Second, when consistent hypotheses cluster 

densely in one dimension while a bit sparsely in other dimensions, 

as shown in Figure 5 (b), our scheme can automatically grow the 

dense region along sparsely distributed dimensions. Therefore, 

our scheme outperforms a pre-defined coarse quantization strate-

gy, which may introduce lots of noises for densely clustered di-

mension in these scenarios.  

4.4.2 Reducing Time/Memory cost 

Storing and searching in a full Hough space with fine quantization 

involves high space and time complexity. To address this issue, 

we propose two strategies which break the problem into a set of 

sub-problems of low complexity: 

Subspace dense region detection and final parameter calcula-

tion. We reduce the problem of detecting high-dimensional dense 

regions in a full-parameter space to finding dense regions for each 

dimension independently. Figure 6 (a) and (b) provides two ex-

amples of locating dense regions for dimension mi and mj, inde-

pendently and respectively. In this example, we quantize both mi 

and mj into 8 bins and along each dimension we count the number 

of votes for each bin individually. We detect the peak bins Qi and 

Qj for mi and mj and grow the dense regions around the peak bins. 

The green boxes denote the final detected dense region. Such 

simplification can reduce the space and time complexity from 

O(K1*é*Km) to O(K1+é+Km). 

After obtaining the dense regions for each dimension, we can 

calculate the concrete parameter of each dimension in two differ-

 

       (a)                                                (b)                                  

Figure 5. Detect dense region based on our procedure for dif-

ferent hypotheses distributions 

     Algorithm1:  Dense region detection 

Step1:   Initial DenseRegioni = {}, Boundleft = Boundright= null  

Step2:   Detect the peak, and DenseRegioni = {binpeak},  
Boundleft = binpeak -1,  Boundright =  binpeak +1 

Step3:   REPEAT  
                   if: N(Boundleft)>threshold    (N(*): number of votes) 
                        Boundleft Ą  DenseRegioni, Boundleft -- 
                   else if: N(Boundright)>threshold 
                         Boundright Ą  DenseRegioni, Boundright ++ 
                   else 
                         go to END 

Step4:    go to REPEAT 

Step5:    END 

        

Algorithm2:  MICS based model estimation in Hough space  

Step1: Calculate (m1, m2, m3, m4) hypotheses, quantize mi 
(1 4)i¢ ¢  space and cast hypotheses into bins. 

Step2:  for {parameter = mi, (1 4)i¢ ¢ } 
¶ Dense region detection 
¶ Calculate a concrete mi   

 
Step3: Calculate ti ( , )i x y= hypotheses based on concrete mi 

(1 4)i¢ ¢ , quantize ti ( , )i x y= space and cast hypothes-
es into bins. 

Step4:  for {parameter = ti ( , )i x y= } 
¶ Dense region detection 
¶ Calculate a concrete ti  

 

 
       (a)                                                (b)                                  

Figure 6. Illustration of the dense region detection and concrete 

parameter calculation for mi and mj, respectively.  



ent ways: a) averaging the weighted quantized values within the 

region. The weight of each quantized value is defined using the 

number of hypotheses in this bin over the total number of hypo-

theses in the detected region. An example of this calculation is 

shown in Figure 6 (a) and (b). Such scheme is fast and memory 

cheap since we do not need to store the real parameter values 

obtained from MICSs. In our following experiments, we calculate 

the final parameters in this way. b) In order to obtain more accu-

rate parameters, we can also average the real values estimated 

based on MICSs within the detected region. But this scheme de-

mands more memory for storing the real parameter values and 

more time for accessing them.   

Sequential computation. To further reduce the computational 

complexity, we divide the whole model estimation flow into two 

sequential steps: (m1, m2, m3, m4) estimation and (tx, ty) translation 

estimation. In the first step, we compute the (m1, m2, m3, m4) hy-

potheses based on MICSs. This step involves C1=O(4*NMICS) 

computations, where NMICS is the total number of MICSs. Then 

we calculate the final parameters (m1, m2, m3, m4) based on which 

we further compute translation hypotheses (tx, ty) using every 

individual correspondences. A complete translation hypotheses 

estimation involves C2=O(2*N) computations, where N is the 

number of correspondences used for model estimation. The total 

computation complexity in a sequential strategy is  

Cseq= C1+C2 = O(4*NMICS)+ O(2*N)   

However, without the sequential strategy, the total computation 

complexity is  

C = O(6*NMICS)     

Since NMICSs >> N, Cseq is always smaller than C. Algorithm2 

summarizes the whole flow of MICS based model estimation in a 

Hough space. 

   

5. Using MICS in Augmented Paper Systems  
 

In this section, we briefly present three AP systems based on our 

prior work, demonstrating how the MICS-based large scale image 

identification can help bring new applications and business pros-

pects of augmented paper. 

5.1 EMM System 

EMM [8, 9] system offers a linkage of a static paper document 

with dynamic multimedia information via a camera-phone. The 

user snaps a picture of a paper document through a camera phone 

(Figure 7 (1)); the system identifies the document (Figure 7 (2)) 

and in return retrieves and plays the associated media on the 

phone (Figure 7 (3)). Based on this system, we could develop a lot 

of useful applications. For example, in-situ multimedia-

augmented manuals allow the users to present on cell phone video 

tutorials of various instructions, such as operating appliances and 

performing maintenance. EMMs can also be applied to multime-

dia advertisements (Ads) on paper bills, flyers or catalogs. EMMs 

not only bring to paper more expressive media for Ads, but also 

allow users to proactively interact with the Ads and start shopping 

workflow immediately.  However, current EMM can only support 

small datasets, which limits the number of multimedia enhanced 

advertising leaflets and reduces the attractiveness to users. With 

the new MICS method, the EMM system could support country-

wide or even world-wide multimedia enhanced advertisements on 

paper, which will in return stimulates the wide deployment of it.  

 

5.2 FACT 

The EMM system creates a linkage between a pre-defined paper 

patch and its corresponding digital media. However, in many 

scenarios, users expect to select arbitrary content of a paper and 

receive different augmented visual feedbacks according to par-

ticular operations. To meet such user demand, we developed an 

augmented paper system called FACT [11], which supports fine-

grained pen-finger-based interactions with paper documents. 

With a camera-projector unit, a laptop, and ordinary paper docu-

ments, FACT identifies paper documents with pixel level docu-

ment visual features and tracks pen/finger tips. The pen-finger 

gestures on paper are interpreted as the equivalent mouse interac-

tions on the matched digital document. Therefore FACT allows a 

user to issue pen gestures on a paper document to select fine-

grained content (e.g. individual words and user-defined arbitrary 

apply various digital operations. For instance, to find the defini-

tion of an unfamiliar word in a paper document, a user can point a 

pen tip to the word and issue a “keyword Search” command. In 

response, the occurrences of that word on paper are highlighted by 

projector (Figure 1 (1)), so that user can easily browse the occur-

rence for the definition. The visual feedbacks can be also dis-

played on computer screen beyond being projected on paper doc-

uments. For example, users can use their pen to point to an arbi-

trary location on a paper map (Figure 8 (1)), and then view the 

Google Street View on the laptop (Figure 8 (2)).  

The fine-grained interaction of FACT requires high accuracy in 

document identification and registration. Although the previous 

Figure 7. A query process of EMM system. (1) Snap a picture of 

an EMM-signified document; (2) Identify the captured docu-

ment patch and get its digital version in the database; (3) dis-

play the associated video on a cell phone  

Figure 8. Synchronous map navigation on a map and a laptop 

(1)Point a location on a paper map by a ordinary pen; (2) dis-

play the Google Street View on a laptop screen  



implementation can achieve such accuracy, it just supports a very 

limited set of data (e.g. hundreds of pages and maps of a couple of 

cities), due to its use of raw visual features. With our new MICS 

method, we can significantly expand the scope of available docu-

ments without sacrificing the accuracy. For example, now we 

could index one million pages of ACM proceedings or maps cov-

ering a country even the whole globe. As the result, the usefulness 

of FACT is greatly improved.    

5.3 PACER 

FACT system enables fine-grained interaction between paper and 

computers. However, to visualize feedbacks, FACT system relies 

on a projector or a laptop screen, which is portable but not easy to 

be deployed for mobile users. To provide a similar system that 

could be used conveniently in mobile scenarios, we developed a 

system named PACER with camera-touch screen phones.  

PACER [12, 13] is a gesture based augmented paper system that 

supports fine-grained paper document content manipulation 

through the touch screen of a camera phone. Like FACT, PACER 

relies on visual features to identify paper documents. It also 

adopts camera-based phone-motion detection for embodied ges-

tures, e.g. marquees as shown in Figure 9 (1), with which users 

can flexibly select and interact with document details (e.g. indi-

vidual words, symbols, and pixels). The touch input is incorpo-

rated to facilitate target selection at fine-granularity (see examples 

in Figure 9 (2-3)), and to address some limitations of the embo-

died interaction, such as hand jitter. 

With the document identification and tracking in conjunction with 

camera-touch hybrid interactions, PACER eases the development 

of camera-touch phone based interactive paper applications. For 

example, in scenarios of reading paper document outside without 

a computer nearby, PACER enables the user to pick arbitrary 

content on paper, such as math symbols (e.g. Ɵ and ɸ) and foreign 

words, which are difficult for a user to type in. After selecting 

paper content via PACER (Figure 10 (1-2)), the user can issue 

various commands, including Google, Wikipedia, Citation Down-

loading, Copy&Email, Dictionary and Keyword Finding (Figure  

10 (2)).  Similar to EMM and FACT, the PACER system can be 

effectively enhanced by using our MICS approach as the underly-

ing identification technique and thus accommodating a large scale 

document data. 

6. Performance Evaluation 
 

6. 1. EMM Identification 
We apply our method to EMM-signified document identification 

and evaluate its performance. The performance is greatly affected 

by two key parameters: 1)TopK, the number of top-ranked images 

that will be verified by our method ; 2) score threshold, the mini-

mum number of correspondences between a query image and an 

indexed image, below which the query image is rejected as an 

unrecognized document. To ensure a best performance, we first 

conduct a set of experiments for selecting the optimal parameters 

for our method.  After that we have a series of comparison expe-

riments to head-to-head compare our method with the state-of-

the-art approaches, hamming embedding [3] and RANSAC [4, 7]. 

 

6.1.1 Database and Query set 

The dataset is composed of three image sets: 1) EMM-ICME2K, 

which is generated from the ICME06 proceedings and has 2188 

document images with text, images, and figures, 2) EMM-

Oxford5k, which is constructed from Oxford5k [4] dataset con-

sisting of 5k+ natural images, and  3) one million distracter im-

ages randomly crawled from Flickr. We purposely mix the dataset 

with different types of images in order to mimic the cases in real 

world and have a clear understanding whether or not our method 

can work well for practical applications. 

For ground truth, we randomly select 109 document images and 

119 natural images from EMM-ICME2K and EMM-Oxford5k, 

respectively.  

For query images, we manually take five pictures of a hardcopy of 

each ground truth image, yielding in total 1140 positive images 

(one image is accidently missing thus in practical we only have 

1139 query images). In order to know the effectiveness of our 

method in rejecting an un-registered image, we also randomly 

select another 1139 images that are not included in our database, 

i.e. negative images. By combining the positive and negative im-

ages, we get a query set with total 2278 images. 

6.1.2 Measurement 

Detection Rate: number of positive documents that are successful 
identified over the total number of positive documents. In our 
case, the detection rate is 1 if all the 1139 positive documents are 
successfully identified. 

Precision: number of correctly identified positive documents over 
the total number of identified documents.  

      

Figure 9. A hybrid marquee gesture for copying a rectangular 

region form a paper document. (1) Initial coarse selection (in 

orange) with a camera-detected embodied gesture (in red) 

through a Magic-Lens-Like interface. (2) Fine-tuning with a 

touch gesture (in green) on the screen. (3) The whole hybrid 

gesture and the resulting region. Excerpted from [12] 

 

Figure 10. (1) Selecting paper content via a camera-phone; (2) 

one selected word using PACER;  (3) various commands in 

PACER, such as Google, email and dictionary  



Time Cost: average time cost in matching and verification for 
identifying a document. The total time consumption should take 
into account of SIFT feature extraction and bag-of-words quanti-
zation. But since both our method and HE adopt the same proce-
dure for these two steps, we only consider the difference in 
matching and verification. 

Memory Cost: average memory cost involved in a practical testing, 

i.e. reading from Windows task manager.  

6.1.3 Settings 

For all the images, we resize them to no larger than 256 x 256 and 
extract SIFT features of the resized images, as small image size 
leads to less local features, costing less memory and time. For 
each SIFT feature, we quantize them into visual words based on a 
pre-trained 100k-sized vocabulary. The vocabulary is trained 
using a combination of 2k ICME document images and 5k oxford 
natural images. All the following experiments are running on a PC 
equipped with an Intel Pentium (R) quad-core 2.83GHz CPU and 
8GB RAM. All the time cost is reported based on the utilization 
of a single CPU. 
 
6.1.4 Experimental Results 

1) Selecting number of verified images (TopK) 

In principle, the more images can be verified, the better detection 
rate and precision we can achieve, but the more time will be taken. 
In this experiment, we revolve around the effects of this parameter. 
Over 1M+ images, we test the performance of five different con-
figurations: 100, 1000, 5000, 10k and entire candidate images. For 
this test, we set the score threshold for rejecting a document as 25. 
In the next experiment, we will further examine the impacts of the 
threshold. 
 
Table 1 displays the performance when varying the parameter 
TopK. When TopK is 100, the detection rate, precision and time 
cost are 81%, 94.5% and 280ms, respectively (first row of Table 
1). These three numbers increase to 95%, 99.2% and 330ms when 
TopK is 5000 (third row of Table 1). Further increasing TopK no 
longer improves the detection rate and precison, and slightly pro-
longs the processing time (last two rows of Table 1). This result 
reflects that all the correctly matched images are ranked in the 
first 5000 positions. Therefore, verifying the top 5000 candidate 
images is sufficient for achieving the best performance on this 
dataset. .   
 

Table 1. Performance when varying TopK on 1M+ images, 
score threshold=25 

TopK Detection rate Precision Time (ms) 

100 
1000 
5000 

10k 
all 

0.81 
0.94 
0.95 

0.95 
0.95 

0.945 
0.990 
0.992 

0.992 
0.992 

280 
289 
330 

343 
345 

 
2) Selecting threshold 

The score threshold is another important parameter. A high thre-
shold can reject many false documents and lead to a high preci-
sion, but may also accidently exclude some positive documents, 
yielding a low detection rate. In this experiment, we test the per-
formance of three different thresholds for selecting the best one. 
Ideally, we expect 100% detection rate and 100% precision. How-
ever, in practice, it is difficult to achieve perfect performance for 
the both, thus between the two we opt more to have good preci-
sion than good detection rate. This is because according to our 
observation, the users may feel more frustrated if the system re-
turns a wrong document than returns nothing. 

Table 2 displays the performance of three different thresholds: 10, 
25 and 50. When increasing the threshold from 10 to 25, the de-
tection rate declines from 0.99 to 0.95, i.e. 4% decrease, while the 
precision improves from 0.888 to 0.992, i.e. 12% improvement.  
When further increasing the threshold from 25 to 50, the detection 
rate drops from 0.95 to 0.77, i.e. 19% decrease, and the precision 
slightly increases from 0.992 to 0.993, i.e. 0.1%. Taking into ac-
count of the detection rate and precision, we choose 25 as the best 
parameter among the three configurations.  

Table 2. Performance of different thresholds on 1M+ images, 
TopK=5000 

Threshold Detection rate Precision 

10 
25 

50 

0.99 
0.95 

0.77 

0.888 
0.992 

0.993 

 
3) Method evaluation 

Baseline. We used the bag-of-words matching plus state-of-the-
art 2-stage verification as the “baseline” approach. On the first 
stage, we adopt HE [3], one of the best weak verification ap-
proach, for pre-filtering and on the second stage, we apply RAN-
SAC on the top10 candidate images for strong verification To 
examine the performance gain at each stage of the baseline ap-
proach, we also report the performance of only using HE and 
RANSAC, respectively. In this experiment, we set the length of 
hamming code as 64, which has been shown to provide an overall 
best performance in [3] and utilize the opencv [22] implementa-
tion for RANSAC. 
 
Comparison. Table 3 displays the comparison results on the da-

tabase with 1007,251 images. We first examine the detection rate 

and precision. By comparing the results in the first two columns 

we obtain four key observations: 1) weak verification HE 

achieves reasonable detection rate (89%) while low precision 

(74%). This result confirms our former claim that weak verifica-

tion is not sufficiently effective in removing false correspon-

dences thus leads to a low precision. 2) On the contrary, strong 

geometric verification method, RANSAC, achieves good enough 

precision but a low detection rate. This is because, due to high 

computational cost, it is only able to be applied for topk candidate 

images (top 10 in these experiments), therefore it cannot detect 

images that are not included in the verification list. 3) The combi-

nation of weak and strong verification in a two-stage flow 

achieves both satisfactory detection rate and precision, which are 

91% and 99.3% respectively. 4) Our method, as shown in the last 

row obtains 4% higher detection rate than the HE+RANSAC. At 

the same time, the precision achieved by our method is very close 

to that is obtained in HE + RANSAC.  

 

In terms of memory cost, our method consumes about 4GB mem-

ory space, against 6GB used by HE and 6.8GB used by 

HE+RANSAC. These results are consistent with the theoretical 

computation of memory cost. In our method, each local feature 

cost 4bytes in storing the geometric information (2bytes for x-y 

coordinates and 2 bytes for quantized scale and angle). While in 

HE each feature utilizes 8bytes for encoding the 64-bit hamming 

code. There are 1M images in the database, assume each image 

contains around 500 local features, thus there are in total 0.5G 

local features. Since HE spends 4btyes more memory space for 

each local feature than our approach, accordingly, HE consumes 

totally 2GB more than our method. Beyond the memory cost for 

64-bit hamming code, HE+RANSAC demands another 2Bytes for 

x-y coordinates of each local features. As a result, HE+RANSAC 

costs 0.8GB more space than HE alone.  



We finally examine the time cost and observe that, our method is 

as fast as weak verification approach HE and 2.7X faster than 

HE+RANSAC. 

To conclude, the results in Table 3 demonstrate that our method 

can achieve similar or even better detection rate and identification 

precision as/than a state-of-the-art image matching approach de-

signed for object retrieval while costing much less memory and 

time than it.     

Table 3. Performance comparison over 1M+ images 

Method Detect 
Rate 

Precision Memory 
cost(GB) 

Time 
Cost (ms) 

HE 
RANSAC 

HE+RANSAC 
MICS  

0.89 
0.79 
0.91 
0.95 

0.744 
0.957 
0.993 
0.992 

6 
3 

6.8 
4 

333 
1417 
1230 
330 

 

6.2 Precise Physical-Digital Interaction Mapping 

MICS is also suitable for AP systems that require high registration 

accuracy for fine-grained interaction besides high identification 

accuracy, such as FACT [11]. In this section, we evaluate our 

method in the FACT system to confirm its high registration accu-

racy, high identification accuracy and low time complexity. In the 

meantime, we compare it with original FACT implementation 

[11], with the same testing images and measurements.  

 
6.2.1 Database and Query set 

The database is a combination of two sets of images: 1) 400 doc-

ument images which are generated by 100 randomly selected 

articles (400 pages in total) from ICME 2006 proceedings. Each 

image is resized to 306x396; it has been shown in [11] that this 

dimension can achieve best performance. 2) 1M images randomly 

crawled from Flickr as distracters, which cover a wide range of 

images including natural images, graphics, figures and text. 

The ground truth images are generated by randomly choosing 116 

images from the 400 document images and rendering them into 

5100 x 6600 JPEG images (in 600 dpi). Within each ground truth 

image, four check points are randomly selected (Figure 10 (1)), 

and their coordinates at 5100 x 6600 resolutions are recorded. 

Each ground truth image is printed on normal letter-size paper and 

then is captured in video frames (960 x 720) by the FACT inter-

face. For each ground truth image, we select 10 continuous video 

frames as query images, accordingly generating a query set of 

1160 images.  

To evaluate the registration accuracy, we ask users to mark the 

printed check points in the query images (Figure 11 (2)). These 

user-marked locations are then mapped to the digital document 

reference frame and compared against the ground truth. 

 

6.2.2 Measurement 

Identification Accuracy is the percentage of the pages correctly 
identified.  

Transform Error is the average ratio of the point mapping errors 
to the diagonal length of the ground truth document (8341 pixels). 
The point mapping error is the distance between a ground truth 
check point and its corresponding recognized check point. 

Identification Time is the time during for identifying a document 
image and deriving the coordinate transform matrices.  
 
6.2.3 Settings 

We utilize a Logitech QuickCam Pro Webcam and 3M MPro 110 
portable digital projector. They connected to the PC via a USB 

and a VGA port respectively, with the projector as the secondary 
display of the PC. The camera-projector unit was attached to a 
lamp stand, and was about 25cm high above the table. At this 
distance, the camera roughly covered two letter-size paper sheets, 
and the projection area was about 13cm x 9.5cm. For all the im-
ages, we extract SIFT features and quantize them into visual 
words based on a pre-trained 100k-sized vocabulary. The vocabu-
lary is trained using a combination of 3k document images and 3k 
natural images. According to the results of previous parameter 
selection experiments and we set TopK and score threshold to 
5000 and 25, respectively. 
 

6.2.4 Experimental Results 

We first examine Identification Accuracy. As shown in the first 
two rows of Table 4, for the small dataset with 400 document 
images, our approach achieves the same perfect accuracy, i.e. 
100% as [11] does. As the dataset scales up to 1M images, our 
method can still maintain the 100% identification accuracy (see 
the third row of  Table 4), which confirms the feasibility of our 
method for a large-scale FACT system. 

We further check Transform Error of those correctly identified 
frames. The result is very encouraging: the average error is <= 
0.67% for both small dataset with 400 registered documents and 
1M-scale large dataset. The same transform errors for both small 
and large datasets are reasonable: Our method achieves 100% 
identification accuracy in both small and large dataset. As long as 
a document is correctly identified, the same matching pair of a 
paper document and its digital version is used for deriving the 
transformation matrix, yielding the same transform errors.  

When comparing the first two rows of Table 4 we observe that 
our method achieves smaller transforms errors than the prior iden-
tification technique used in the original FACT system. The prior 
identification technique leverages ANN (Approximate Nearest 
Neighbor) for fast matching SIFT features, and removes SIFT 
feature pairs with distance over a pre-defined threshold as false 
matching pairs. Such false-match-filtering strategy does not util-
ize spatial layout constraints, thus removes less false matches than 
our new method, which leads to larger transform errors. In all, the 
small transform errors reflect that our method is feasible and ef-
fective for fine-grained interaction of the FACT system.  

In terms of Identification Time, our method is more efficient than 
the prior technique when running on computers of similar confi-
gurations. As shown in the first two rows, when identifying doc-
uments in small datasets with 400 documents, our method utilizes 
960ms, against 2311ms for [11]. In particular, in our method on 
average 732ms is used for SIFT feature extraction and the remain-
ing 228ms is consumed for matching and computing the transform 
matrix. As the dataset scales up to 1M+ images, our method costs 
in total 2166ms. Although the processing is not real time, our 
early deployment shows that it does not prevent user interaction 
much, because the paper usually remains static during within page 

 

Figure 11. 1) A testing page with ground truth check points (red 

cross); 2) A camera image with manually marked check points 

(white cross) 



fine-grained interaction and the pen-tip detection is actually per-
formed in real-time. 

Table 4. Performance comparison for FACT  

Method Database 
Size 

Accuracy Transform 
Error 

Time 
(ms) 

old tech[11] 
MICS 
MICS 

400 
400 

1,000,116 

100% 
100% 
100% 

0.85% 
0.67% 
0.67% 

2311 
960 

2166 

 

7. Conclusions and Future Work 
 

In this paper, we presented a novel document identification me-

thod for large-scale augmented paper applications. At the heart of 

our approach is a highly efficient correspondence verification 

approach based on Hough transform on a set of MICSs. By taking 

into account of linear transformation constraints in augment paper 

applications, we confine the possible geometric transformations 

between matched images. This constraint helps ensure the robust-

ness of Hough transform based model estimation and reduce the 

time cost as well. To further enhance the robustness and efficien-

cy of model estimation, a detection method in the Hough space 

and a MICS generation strategy are proposed. Based on the con-

straint that most features on a captured image can be mapped its 

indexed version, we further select a small subset of MICSs for 

model estimation. Such strategy can greatly reduce the time and 

memory cost while affect little on accuracy.  We demonstrated the 

accuracy, efficiency and scalability of our method on three realis-

tic augmented paper systems, EMM [8, 9], FACT [11] and PAC-

ER [12, 13]. Experimental results on 1M+ target images show that 

our method is able to achieve 95% detection rate and over 99.2% 

precision. Comparing to the state-of-the-art image retrieval ap-

proach, our approach outperform it by achieving 4% improve-

ments in detection rate and very close precision, concurrently our 

method saves 40% and 70% memory and time cost. 

Future work includes improving identification speed to achieve 

real time performance. This improvement enables augmented 

paper applications with a mobile camera-display unit, which re-

quires real time document tracking and aligning. There are many 

application scenarios demands a mobile camera-display unit. For 

example, pointing a camera-projector unit to a large map attached 

on wall and simultaneously augmenting visual data, e.g. land-

marks and street view, on locations where a user is aiming at. 

More investigation will also be carried out for large-scale 3D 

object identification, which could facilitate general-purpose aug-

mented reality applications. 
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