
Large-Scale Collection of Usage Data to Inform Design  

David M. Hilbert1 & David F. Redmiles2 
1FX Palo Alto Laboratory, 3400 Hillview Ave., Bldg. 4, Palo Alto, CA 94304 USA 

2Information and Computer Science, University of California, Irvine, CA 92717 USA 
1hilbert@pal.xerox.com & 2redmiles@ics.uci.edu 

 
Abstract: The two most commonly used techniques for evaluating the fit between application design and use — 
namely, usability testing and beta testing with user feedback — suffer from a number of limitations that restrict 
evaluation scale (in the case of usability tests) and data quality (in the case of beta tests). They also fail to provide 
developers with an adequate basis for: (1) assessing the impact of suspected problems on users at large, and (2) deciding 
where to focus development and evaluation resources to maximize the benefit for users at large. This paper describes an 
agent-based approach for collecting usage data and user feedback over the Internet that addresses these limitations to 
provide developers with a complementary source of usage- and usability-related information.  Contributions include: a 
theory to motivate and guide data collection, an architecture capable of supporting very large scale data collection, and 
real-word experience suggesting the proposed approach is complementary to existing practice. 
 
Keywords:  Usability testing, beta testing, automated data collection, software monitoring, post-deployment evaluation 
 

1 Introduction  
Involving end users in the development of interactive 
systems increases the likelihood those systems will be 
useful and usable. The Internet presents hitherto 
unprecedented, and currently underutilized, opportunities 
for increasing user involvement by: (1) enabling cheap, 
rapid, and large-scale distribution of software for 
evaluation purposes and (2) providing convenient 
mechanisms for communicating application usage date 
and user feedback to interested development 
organizations. 

Unfortunately, a major challenge facing development 
organizations today is that there are already more 
suspected problems, proposed solutions, and novel 
design ideas emanating from various stakeholders than 
there are resources available to address these issues 
(Cusumano & Selby, 1995). As a result, developers are 
often more concerned with addressing the following 
problems, than in generating more ideas about how to 
improve designs: 
• Impact assessment: To what extent do suspected or 

observed problems actually impact users at large? 
What is the expected impact of implementing 
proposed solutions or novel ideas on users at large? 

• Effort allocation: Where should scarce design, 
implementation, testing, and usability evaluation 

resources be focused in order to produce the 
greatest benefit for users at large? 

Current usability and beta testing practices do not 
adequately address these questions. This paper describes 
an approach to usage data and user feedback collection 
that complements existing practice by helping 
developers address these questions more directly. 

2 Problems 

2.1 Usability Testing 
Scale is the critical limiting factor in usability tests. 
Usability tests are typically restricted in terms of size, 
scope, location, and duration: 
• Size, because data collection and analysis 

limitations result in evaluation effort being linked to 
the number of evaluation subjects. 

• Scope, because typically only a small fraction of an 
application’s functionality can be exercised in any 
given evaluation. 

• Location, because users are typically displaced 
from their normal work environments to more 
controlled laboratory conditions. 

• Duration, because users cannot devote extended 
periods of time to evaluation activities that take 
them away from their day-to-day responsibilities. 



   

Perhaps more significantly, however, once problems 
have been identified in the lab, the impact assessment 
and effort allocation problems remain: What is the 
actual impact of identified problems on users at large? 
How should development resources be allocated to fix 
those problems? Furthermore, because usability testing 
is itself expensive in terms of user and evaluator effort: 
How should scarce usability resources be focused to 
produce the greatest benefit for users at large? 

2.2 Beta Testing 
Data quality is the critical limiting factor in beta tests. 
When beta testers report usability issues in addition to 
bugs, data quality is limited in a number of ways. 

Incentives are a problem since users are typically 
more concerned with getting their work done than in 
paying the price of problem reporting while developers 
receive most of the benefit. As a result, often only the 
most obvious or unrecoverable errors are reported. 

Perhaps more significantly, there is often a 
paradoxical relationship between users’ performance 
with respect to a particular application and their 
subjective ratings of its usability. Numerous usability 
professionals have observed this phenomenon. Users 
who perform well in usability tests often volunteer 
comments in which they report problems with the 
interface although the problems did not affect their 
ability to complete tasks. When asked for a justification, 
these users say things like: “Well, it was easy for me, 
but I think other people would have been confused.” On 
the other hand, users who have difficulties using a 
particular interface often do not volunteer comments, 
and if pressed, report that the interface is well designed 
and easy to use. When confronted with the discrepancy, 
these users say things like: “Someone with more 
experience would probably have had a much easier 
time,” or “I always have more trouble than average with 
this sort of thing.” As a result, potentially important 
feedback from beta testers having difficulties may fail to 
be reported while unfounded and potentially misleading 
feedback from beta testers not having difficulties may 
be reported. 1 

Nevertheless, beta tests do appear to offer good 
opportunities for collecting usability-related 
information. Smilowitz and colleagues showed that beta 
testers who were asked to record usability problems as 
they arose in normal use identified almost the same 
number of significant usability problems as identified in 
laboratory tests of the same software (Smilowitz et al., 
1994). A later case study performed by Hartson and 

                                                           
1 These examples were taken from a discussion group for usability 
researchers and professionals involved in usability evaluations. 

associates, using a remote data collection technique, also 
appeared to support these results (Hartson et al., 1996). 
However, while the number of usability problems 
identified in the lab test and beta test conditions was 
roughly equal, the number of common problems 
identified by both was rather small. Smilowitz and 
colleagues offered the following as one possible 
explanation: 

In the lab test two observers with experience with the 
software identified and recorded the problems. In some 
cases, the users were not aware they were incorrectly using 
the tool or understanding how the tool worked. If the same 
is true of the beta testers, some severe problems may have 
been missed because the testers were not aware they were 
encountering a problem (Smilowitz et al., 1994). 

Thus, users are limited in their ability to identify and 
report problems due to a lack of knowledge regarding 
expected use. 

Another limitation identified by Smilowitz and 
colleagues is that the feedback reported in the beta test 
condition lacked details regarding the interactions 
leading up to problems and the frequency of problem 
occurrences. Without this information (or information 
regarding the frequency with which features associated 
with reported problems are used) it is difficult to assess 
the impact of reported problems, and therefore, to 
decide how to allocate resources to fix those problems. 

3 Related Work 

3.1 Early Attempts to Exploit the Internet 
Some researchers have investigated the use of Internet-
based video conferencing and remote application 
sharing technologies, such as Microsoft NetMeetingTM, 
to support remote usability evaluations (Castillo & 
Hartson, 1997). Unfortunately, while leveraging the 
Internet to overcome geographical barriers, these 
techniques do not exploit the enormous potential 
afforded by the Internet to lift current restrictions on 
evaluation size, scope, and duration. This is because a 
large amount of data is generated per user, and because 
observers are typically required to observe and interact 
with users on a one-on-one basis. 

Others have investigated Internet-based user-
reporting of “critical incidents” to capture user feedback 
and limited usage information (Hartson et al., 1996). In 
this approach, users are trained to identify “critical 
incidents” themselves and to press a “report” button that 
sends video data surrounding user-identified incidents 
back to experimenters. While addressing, to a limited 
degree, the lack of detail in beta tester-reported data, this 
approach still suffers from the other problems associated 
with beta tester-reported feedback, including lack of 



   

proper incentives, the subjective feedback paradox, and 
lack of knowledge regarding expected use.  

3.2 Automated Techniques 
An alternative approach involves automatically capturing 
information about user and application behavior by 
monitoring the software components that make up the 
application and its user interface. This data can then be 
automatically transported to evaluators to identify 
potential problems. A number of instrumentation and 
monitoring techniques have been proposed for this 
purpose (Figure 1). However, as argued in more detail in 
(Hilbert & Redmiles, 2000), existing approaches all suffer 
from some combination of the following problems, 
limiting evaluation scalability and data quality: 

The abstraction problem: Questions about usage 
typically occur in terms of concepts at higher levels of 
abstraction than represented in software component event 
data. This implies the need for “data abstraction” 
mechanisms to relate low-level data to higher-level 
concepts such as user interface and application features as 
well as users’ tasks and goals. 

The selection problem: The data required to answer 
usage questions is typically a small subset of the much 
larger set of data that might be captured. Failure to 
properly select data increases the amount of data that must 
be reported and decreases the likelihood that automated 
analysis techniques will identify events and patterns of 
interest in the “noise”. This implies the need for “data 
selection” mechanisms to separate necessary from 
unnecessary data prior to reporting and analysis. 

The reduction problem: Much of the analysis needed 
to answer usage questions can actually be performed 
during data collection. Performing reduction during 
capture not only decreases the amount of data that must be 
reported, but also increases the likelihood that all the data 
necessary for analysis is actually captured. This implies 
the need for “data reduction” mechanisms to reduce data 
prior to reporting and analysis. 

The context problem: Potentially critical information 
necessary in interpreting the significance of events is often 
not available in event data alone. However, such 
information may be available “for the asking” from the 
user interface, application, artifacts, or user. This implies 
the need for “context-capture” mechanisms to allow state 
data to be used in abstraction, selection, and reduction. 

The evolution problem: Finally, data collection needs 
evolve over time independently from applications. 
Unnecessary coupling of data collection and application 
code increases the cost of evolution and impact on users. 
This implies the need for “independently evolvable” data 
collection mechanisms that can be modified over time 
without impacting application deployment or use. 

Figure 1 summarizes the extent to which existing 
approaches address these problems. 

4 Approach  
We propose a novel approach to large-scale usage data 
and user feedback collection that addresses these 
problems. Next we present the theory behind this work. 

4.1 Theory of Expectations 
When developing systems, developers rely on a number 
of expectations about how those systems will be used. We 
call these usage expectations (Girgensohn et al., 1994). 
Developers’ expectations are based on their knowledge of 
requirements, the specific tasks and work environments of 
users, the application domain, and past experience in 
developing and using applications themselves. Some 
expectations are explicitly represented, for example, those 
specified in requirements and in use cases. Others are 
implicit, including assumptions about usage that are 
encoded in user interface layout and application structure. 

For instance, implicit in the layout of most data entry 
forms is the expectation that users will complete them 
from top to bottom with only minor variation. In laying 
out menus and toolbars, it is usually expected that features 
placed on the toolbar will be more frequently used than 
those deeply nested in menus. Such expectations are 
typically not represented explicitly and, as a result, fail to 
be tested adequately. 

Detecting and resolving mismatches between 
developers’ expectations and actual use is important in 
improving the fit between design and use. Once 
mismatches are detected, they may be resolved in one of 
two ways. Developers may adjust their expectations to 
better match actual use, thus refining system requirements 
and eventually making the system more usable and/or 
useful. For instance, features that were expected to be 

Technique A
bs

tr
ac

tio
n 

P
ro

bl
em

 

S
el

ec
tio

n 
P

ro
bl

em
 

R
ed

uc
tio

n 
P

ro
bl

em
 

C
on

te
xt

 
P

ro
bl

em
 

E
vo

lu
tio

n 
P

ro
bl

em
 

Chen 1990  X  x X 
Badre & Santos 1991 x X   X 
Weiler 1993  x    
Hoiem & Sullivan 1994  x    
Badre et al. 1995 x X   X 
Cook et al. 1995; 
Kay & Thomas 1995 

instr instr instr instr  

ErgoLight 1998 X     
Lecerof & Paterno 1998 X     

Figure 1: Existing data collection approaches and their support for 
identified problems. A small ‘x’ indicates limited support while a large 
‘X’ indicates more extensive support. “instr” indicates that the problem 
can be addressed, but only by modifying hard-coded instrumentation 
embedded in application code 



   

used rarely, but are used often in practice can be made 
easier to access and more efficient. Alternatively, users 
can learn about developers’ expectations, thus learning 
how to use the existing system more effectively. For 
instance, learning that they are not expected to type full 
URLs in Netscape NavigatorTM can lead users to omit 
“http://www.” and “.com” in commercial URLs such as 
“http://www.amazon.com”. 

Thus, it is important to identify, and make explicit, 
usage expectations that importantly affect, or are 
embodied in, application designs. This can help 
developers think more clearly about the implications of 
design decisions, and may, in itself, promote improved 
design. Usage data collection techniques may then be 
directed at capturing information that is helpful in 
detecting mismatches between expected and actual use, 
and mismatches may be used as opportunities to adjust the 
design based on usage-related information, or to adjust 
usage based on design-related information. 

4.2 Technical Overview 
The proposed approach involves a development platform 
for creating software agents that are deployed over the 
Internet to observe application use and report usage data 
and user feedback to developers. To this end, the 
following process is employed: (1) developers design 
applications and identify usage expectations; (2) 
developers create agents to monitor application use and 
capture usage data and user feedback; (3) agents are 
deployed over the Internet independently of the 
application to run on users' computers; (4) agents perform 
in-context data abstraction, selection, and reduction as 
needed to allow actual use to be compared against 
expected use; and (5) agents report data back to 
developers to inform further evolution of expectations, the 
application, and agents. 

The fundamental strategy underlying this work is to 
exploit already existing information produced by user 
interface and application components to support usage 
data collection. To this end, an event service — providing 
generic event and state monitoring capabilities — was 
implemented, on top of which an agent service — 
providing generic data abstraction, selection, and 
reduction services — was implemented. 

Because the means for accessing event and state 
information varies depending on the components used to 
develop applications, we introduced the notion of a default 
model to mediate between monitored components and the 
event service. Furthermore, because numerous agents 
were observed to be useful across multiple applications, 
we introduced the notion of default agents to allow higher-
level generic data collection services to be reused across 
applications. See Figure 2.  

Note that the proposed approach is different from 
traditional event monitoring approaches in that data 
abstraction, selection, and reduction is performed during 
data collection (by software agents) as opposed to after 
data collection (by human investigators). This allows 
abstraction, selection, and reduction to be performed in-
context, resulting in improved data quality and reduced 
data reporting and post-hoc analysis needs. For more 
technical details see (Hilbert, 1999).  

The current prototype works with Java applications 
and requires developers to insert two lines of code into 
their application: one to start data collection and one to 
stop data collection and report results. Once this has been 
done, developers use an agent authoring user interface to 
define agents without writing code (Figure 4). Once 
agents have been defined, they are serialized and stored in 
an ASCII file with a URL on a development computer. 
The URL is passed as a command-line argument to the 
application of interest. When the application is run, the 
URL is automatically downloaded and the latest agents 
instantiated on the user’s computer. Agent reports are sent 
to development computers via E-mail upon application 
exit. For more technical details see (Hilbert, 1999). 

4.3 Usage Scenario 
To see how these services may be used in practice, 
consider the following scenario developed by Lockheed 
Martin C2 Integration Systems as part of a government-
sponsored research demonstration. 

A group of engineers is tasked with designing a web-
based user interface to allow users to request information 
regarding Department of Defense cargo in transit. After 
involving users in design, constructing use cases, 
performing task analyses, doing cognitive walkthroughs, 
and employing other user-centered design methods, a 
prototype interface is ready for deployment (Figure 3). 

The engineers in this scenario were particularly 
interested in verifying the expectation that users would not 
frequently change the “mode of travel” selection in the 

(YHQW�6HUYLFH

$JHQW�6HUYLFH

'HIDXOW�0RGHO

'HIDXOW�$JHQWV

$SSOLFDWLRQ

8VHU�$JHQWV
$SSOLFDWLRQ�VSHFLILF�GDWD�FROOHFWLRQ�FRGH

�H�J���PHQXV��WRROEDUV��FRPPDQGV��GLDORJV��HWF��

5HXVDEOH�GDWD�FROOHFWLRQ�FRGH

�H�J���³XVH´�DQG�³YDOXH�SURYLGHG´�HYHQWV�

*HQHULF�GDWD�DEVWUDFWLRQ��VHOHFWLRQ��UHGXFWLRQ��
FRQWH[W�FDSWXUH�VHUYLFHV�DQG�DXWKRULQJ�*8,

*HQHULF�HYHQW�DQG�VWDWH�PRQLWRULQJ�VHUYLFHV

&RPSRQHQW�QDPLQJ��UHODWLRQVKLS�DQG�HYHQW
PRQLWRULQJ��VLPSOLILHG�DFFHVV�WR�VWDWH

&RPSRQHQWV��UHODWLRQVKLSV��HYHQWV��VWDWH

 
Figure 2: The layered relationship between the application, default 
model, event service, agent service, default agents, and user-defined 
agents. Shading indicates the degree to which each aspect is believed 
to be generic and reusable. 



   

first section of the form (e.g. “Air”, “Ocean”, “Motor”, 
“Rail”, or “Any”) after having made subsequent 
selections, since the “mode of travel” selection affects the 
choices available in subsequent sections. Expecting that 
this would not be a common problem, the engineers 
decided to reset all selections to their default values 
whenever the “mode of travel” selection is reselected. 

In Figure 4, the developer has defined an agent that 
“fires” whenever the user selects one of the controls in the 

“mode of travel” section of the interface and then selects 
controls outside that section. This agent is then used in 
conjunction with other agents to detect when the user has 
changed the mode of travel after having made subsequent 
selections. In addition to capturing data unobtrusively, the 
engineers decided to configure an agent to notify users (by 
posting a message) when it detected behavior in violation 
of developers’ expectations (Figure 5a). By selecting an 
agent message and pressing the “Feedback” button users 
could learn more about the violated expectation and 
respond with feedback if desired (Figure 5b). Feedback 
was reported along with general usage data via E-mail 
each time the application was exited. Agent-collected data 
was later reviewed by support engineers who provided a 
new release based on the data collected in the field. 

It is tempting to think that this example has a clear 
design flaw that, if corrected, would obviate the need for 
data collection. Namely, one might argue, the application 
should detect which selections must be reselected and 
only require users to reselect those values. To illustrate 
how this objection misses the mark, the Lockheed 
personnel deliberately fashioned the scenario to include a 
user responding to the agent with exactly this suggestion 
(Figure 5b). After reviewing the agent-collected feedback, 
the engineers consider the suggestion, but unsure of 
whether to implement it (due to its impact on the current 
design, implementation, and test plans), decide to review 
the usage data log. The log, which documents over a 
month of use with over 100 users, indicates that this 

 
 Figure 4: Agent authoring interface showing events (top left), components (top middle), 
global variables (top right), agents (bottom left) and agent properties (bottom right). 

 

Figure 5: Agent notification (a) and user feedback (b).  Use of 
these data collection features is optional. 

Figure 3: A prototype user interface for tracking 
Department of Defense cargo in transit. 

(a) 

(b) 



   

problem has only occurred twice, and both times with the 
same user. As a result, the developers decide to put the 
change request on hold. The ability to base design and 
effort allocation decisions on this type of empirical data is 
one of the key contributions of this approach. 

5 Discussion 

5.1 Lab Experience 
We (and Lockheed personnel) have authored data 
collection agents for a number of example applications 
including the database query interface described in the 
usage scenario (15 agents), an interface for provisioning 
phone service accounts (2 agents), and a word processing 
application (53 agents). 1  

Figure 6 illustrates the impact of abstraction, selection, 
and reduction on the number of bytes of data generated by 
the word processing application (plotted on a log scale) 
over time. The first point in each series indicates the 
number of bytes generated by the approach when applied 
to a simple word processing session in which a user opens 
a file, performs a number of menu and toolbar operations, 
edits text, and saves and closes the file. The subsequent 
four points in each series indicate the amount of data 
generated assuming the user performs the same basic 
actions four times over. Thus, this graph represents an 
approximation of data growth over time based on the 
assumption that longer sessions primarily consist of 
repetitions of the same high-level actions performed in 
shorter sessions. 

The “raw data” series indicates the number of bytes of 
data generated if all window system events are captured 
including all mouse movements and key presses. The 
“abstracted data” series indicates the amount of data 
generated if only abstract events corresponding to 
proactive manipulation of user interface components are 
captured (about 4% of the size of raw data). The “selected 
data” series indicates the amount of data generated if only 
selected abstract events and state values regarding menu, 
toolbar, and dialog use are captured (about 1% of the size 
of raw data). Finally, the “reduced data” series indicates 
the amount of data generated if abstracted and selected 
data is reduced to simple counts of unique observed events 
(and event sequences) and state values (and state value 
vectors) prior to reporting (less than 1% of the size of raw 
data). There is little to no growth of reduced data over 
time because data size increases only when unique events 
or state values are observed for the first time.   

                                                           
1 An uncompressed ASCII agent definition file containing 11 default 
agents and 53 user-defined agents for the word processor example is 
less than 70K bytes. The entire data collection infrastructure is less 
than 500K bytes. 

5.2 Non-Lab Experience 
We have also attempted to evaluate and refine our ideas 
and prototypes by engaging in a number of evaluative 
activities outside of the research lab. While these activities 
have been informal, we believe they have been practical 
and provide meaningful insights given our hypotheses and 
domain of interest. Namely, these experiences have all 
contributed evidence to support the hypothesis that 
automated software monitoring can indeed be used to 
capture data to inform design, impact assessment, and 
effort allocation decisions.  

NYNEX Corporation: The Bridget System 
The Bridget system is a form-based phone service 
provisioning system developed in cooperation between 
the Intelligent Interfaces Group at NYNEX Corporation 
and the Human-Computer Communication Group at the 
University of Colorado at Boulder (Girgensohn et al., 
1994). The Bridget development process was 
participatory and iterative in nature. In each iteration, users 
were asked to perform tasks with a prototype while 
developers observed and noted discrepancies between 
expected and actual use. Developers then discussed 
observed mismatches with users after each task. Users 
also interacted with Bridget on their own and voluntarily 
reported feedback to developers.  

There were two major results of this experience. First, 
the design process outlined above led to successful design 
improvements that might not have been introduced 
otherwise.  Second, we identified a number of areas in 
which automated support might improve the process. 

Motivated by this experience, the second author of this 
paper helped develop a prototype agent-based system for 
observing usage on developers’ behalf and initiating 
remote communication between developers and users 
when mismatches between expected and actual use were 
observed. This prototype served as the basis for the work 
described in this paper. However, the idea of capturing 
generic usage data in addition to detecting specific 
mismatches was not addressed. The significance of this 
oversight is highlighted below. 

1

10

100

1000

10000

100000

1000000

Time

B
yt

es
 o

f 
d

at
a Raw

Abstracted

Selected

Reduced

Figure 6: Impact of abstraction, selection, and reduction on bytes of 
data generated (plotted on a log scale) over time. 



   

Lockheed Martin Corporation: The GTN Scenario 
Based on the NYNEX experience, and with the goal of 
making the approach more scalable, the authors developed 
a second prototype (described in this paper) at the 
University of California at Irvine. Independent developers 
at Lockheed Martin Corporation then integrated this 
second prototype into a logistics information system as 
part of a government-sponsored demonstration scenario 
(described in the usage scenario).  

There were two major results of this experience. First, 
the experience suggested that independent developers 
could successfully apply the approach with only moderate 
effort and that significant data could nonetheless be 
captured. Second, the data that was collected could be 
used to support impact assessment and effort allocation 
decisions in addition to design decisions (as illustrated in 
the usage scenario). This outcome had not been 
anticipated since, up to this point, our research had 
focused on capturing design-related information. 

Microsoft Corporation: The “Instrumented Version” 
Finally, in order to better understand the challenges faced 
by organizations attempting to capture usage data on a 
large scale in practice, the first author of this paper 
managed an instrumentation effort at Microsoft 
Corporation. The effort involved capturing basic usage 
data regarding the behavior of 500 to 1000 volunteer users 
of an instrumented version of a well-known Microsoft 
product over a two-month period.1  

Because this was not the first time data would be 
collected regarding the use of this product, infrastructure 
already existed to capture data. The infrastructure 
consisted of instrumentation code inserted directly into 
application code that captured data of interest and wrote it 
to binary files. Users then copied these files to floppy 
disks and mailed them to Microsoft after a pre-specified 
period of use. Unfortunately, due to: (a) the sheer amount 
of instrumentation code already embedded in the 
application, (b) the limited time available for updating 
instrumentation to capture data regarding new features, 
and (c) the requirement to compare the latest data against 
prior data collection results, we were unable to 
reimplement the data collection infrastructure based upon 
this research. Thus, the existing infrastructure was used 
allowing us to observe, first-hand, the difficulties and 
limitations inherent in such an approach. 

The results of this experience were instructive in a 
number of ways. First and foremost, it further supported 
the hypothesis that automated software monitoring can 
indeed be used to inform design, impact assessment, and 

                                                           
1 Due to a non-disclosure agreement, we cannot name the product nor 
discuss how it was improved based on usage data. However, we can 
describe the data collection approach employed by Microsoft. 

effort allocation decisions. Furthermore, it was an 
existence proof that there are in fact situations in which 
the benefits of data collection are perceived to outweigh 
the maintenance and analysis costs, even in an extremely 
competitive development organization in which time-to-
market is of utmost importance. Lessons learned follow. 

How Practice can be Informed by this Research 
The Microsoft experience has further validated our 
emphasis on the abstraction, selection, reduction, context, 
and evolution problems by illustrating the negative results 
of failing to adequately address these problems in practice. 
First, because the approach relies on intrusive 
instrumentation of application code, evolution is a critical 
problem. In order to modify data collection in any way — 
for instance, to adjust what data is collected (i.e., selection) 
— the application itself must be modified, impacting the 
build and test processes. As a result, development and 
maintenance of instrumentation is costly resulting in 
studies only being conducted irregularly. Furthermore, 
there is no mechanism for flexibly mapping between 
lower level events and higher level events of interest (i.e., 
abstraction). As a result, abstraction must be performed as 
part of the post-hoc analysis process resulting in failures to 
notice errors in data collection that affect abstraction (such 
as missing context) until after data has been collected. 
Also, because data is not reduced prior to reporting, a 
large amount of data is reported, post-hoc analysis is 
unnecessarily complicated, and most data is never used in 
analysis (particularly sequential aspects). Finally, the 
approach does not allow users to provide feedback to 
augment automatically captured data. 

How Practice has Informed this Research 
Despite these observed limitations, this experience also 
resulted in a number of insights that have informed and 
refined this research. The ease with which we 
incorporated these insights into the proposed approach 
(and associated methodological considerations) further 
increases our confidence in the flexibility and generality of 
the approach. 

Most importantly, the experience helped motivate a 
shift from “micro” expectations regarding the behavior of 
single users within single sessions to “macro” 
expectations regarding the behavior of multiple users over 
multiple sessions. In the beginning, we focused on 
expectations of the first kind. However, this sort of 
analysis, by itself, is challenging due to difficulties in 
inferring user intent and in anticipating all the important 
areas in which mismatches might occur. Furthermore, 
once mismatches are identified, whether or not developers 
should take action and adjust the design is not clear in the 
absence of more general data regarding how the 
application is used on a large scale. 



   

For instance, how should developers react to the fact 
that the “print current page” option in the print dialog was 
used 10,000 times? The number of occurrences of any 
event must be compared against the number of times the 
event might have occurred. This is the denominator 
problem. 10,000 uses of the “print current page” option 
out of 11,000 uses of the print dialog paints a different 
picture from 10,000 uses of the option out of 1,000,000 
uses of the dialog. The first scenario suggests the option 
might be made default while the second does not. A 
related issue is the need for more general data against 
which to compare specific data collection results. This is 
the baseline problem. For instance, if there are design 
issues associated with features that are much more 
frequently used than printing, then perhaps those issues 
should take precedence over changes to the print dialog. 
Thus, generic usage information should be captured to 
provide developers with a better sense of the “big picture” 
of how applications are used. 

6 Conclusions 
We have presented a theory to motivate and guide usage 
data collection, an architecture capable of supporting 
larger scale collection (than currently possible in usability 
tests) of higher quality data (than currently possible in beta 
tests), and real-word experience suggesting the proposed 
approach is complementary to existing usability practice. 

While our initial intent was to support usability 
evaluations directly, our experience suggests that 
automated techniques for capturing usage information are 
better suited to capturing indicators of the “big picture” of 
how applications are used than in identifying subtle, 
nuanced, and unexpected usability issues.  However, these 
strengths and weaknesses nicely complement the strengths 
and weaknesses inherent in current usability testing 
practice, in which subtle usability problems may be 
identified through careful human observation, but in 
which there is little sense of the “big picture” of how 
applications are used on a large scale. It was reported to us 
by one Microsoft usability professional that the usability 
team is often approached by design and development 
team members with questions such as “how often do users 
do X?” or “how often does Y happen?”. This is obviously 
useful information for developers wishing to assess the 
impact of suspected problems or to focus effort for the 
next release. However, it is not information that can be 
reliably collected in the usability lab. 

We are in the process of generalizing our approach to 
capture data regarding arbitrary software systems 
implemented in a component- and event-based 
architectural style (e.g., JavaBeansTM) and are seeking 
further evaluation opportunities. 

References 
Badre, A.N. & Santos, P.J. (1991). A knowledge-based system 

for capturing human-computer interaction events: 
CHIME. Tech Report GIT-GVU-91-21. 

Badre, A.N., Guzdial, M., Hudson, S.E., & Santos, P.J. (1995). 
A user interface evaluation environment using 
synchronized video, visualizations, and event trace data. 
Journal of Software Quality, Vol. 4. 

Castillo, J.C. & Hartson, H.R. (1997). Remote usability 
evaluation site. http://miso.cs.vt.edu/~usab/remote/. 

Chen, J. (1990). Providing intrinsic support for user interface 
monitoring.  INTERACT’90. 

Cook, R., Kay, J., Ryan, G., & Thomas, R.C. (1995). A toolkit 
for appraising the long-term usability of a text editor. 
Software Quality Journal, Vol. 4, No. 2. 

Cusumano, M.A. & Selby, R.W. (1995). Microsoft Secrets. 
The Free Press, New York, NY. 

Ergolight Usability Software (1998). Product web pages. 
http://www.ergolight.co.il/. 

Girgensohn, A., Redmiles, D.F., & Shipman, F.M. III. (1994). 
Agent-based support for communication between 
developers and users in software design.  KBSE’94. 

Hartson, H.R., Castillo, J.C., Kelso, J., & Neale, W.C. (1996). 
Remote evaluation: the network as an extension of the 
usability laboratory.  CHI’96. 

Hilbert, D.M. & Redmiles, D.F. (2000). Extracting usability 
information from user interface events. ACM 
Computing Surveys (To Appear). 

Hilbert, D.M. (1999). Large-scale collection of application usage 
data and user feedback to inform interactive software 
development. Doctoral Dissertation. Technical Report 
UCI-ICS-99-42. http://www.ics.uci.edu/~dhilbert/papers/. 

Hoiem, D.E. & Sullivan, K.D. (1994). Designing and using 
integrated data collection and analysis tools: challenges 
and considerations. Nielsen, J. (Ed.). Usability 
Laboratories Special Issue of Behaviour and 
Information Technology, Vol. 13, No. 1 & 2. 

Kay, J. & Thomas, R.C. (1995). Studying long-term system 
use. Communications of the ACM, Vol. 38, No. 7. 

Lecerof, A. & Paterno, F. (1998). Automatic support for 
usability evaluation. IEEE Transactions on Software 
Engineering, Vol. 24, No. 10. 

Smilowitz, E.D., Darnell, M.J., & Benson, A.E. (1994). Are 
we overlooking some usability testing methods? A 
comparison of lab, beta, and forum tests. Nielsen, J. 
(Ed.). Usability Laboratories Special Issue of Behaviour 
and Information Technology, Vol. 13, No. 1 & 2. 

Weiler, P. (1993). Software for the usability lab: a sampling of 
current tools.  INTERCHI’93. 


