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ABSTRACT 
 
This paper presents an information-driven online video 
composition system.  The composition work handled by the 
system includes dynamically setting multiple pan/tilt/zoom (PTZ) 
cameras to proper poses and selecting the best close-up view for 
passive viewers.  The main idea of the composition system is to 
maximize captured video information with limited cameras.  
Unlike video composition based on heuristic rules, our video 
composition is formulated as a process of minimizing distortions 
between ideal signals (i.e. signals with infinite spatial-temporal 
resolution) and displayed signals.  The formulation is consistent 
with many well-known empirical approaches widely used in 
previous systems and may provide analytical explanations to 
those approaches.  Moreover, it provides a novel approach for 
studying video composition tasks systematically.  The 
composition system allows each user to select a personal close-
up view.  It manages PTZ cameras and a video switcher based on 
both signal characteristics and users’ view selections.  
Additionally, it can automate the video composition process 
based on past users’ view-selections when immediate selections 
are not available.  We demonstrate the performance of this 
system with real meetings. 
 

1. INTRODUCTION 
 
Many existing video capture systems are professional-operator-
controlled systems.  To increase video capture flexibility and 
reduce labor cost, researchers proposed fully automatic video 
capture systems, including Bell Core’s Auto-Auditorium [2], 
Cornell’s lecture capturing system [9], Microsoft’s ICAM 
system [8], and AT&T’s Automated Cameramen [4].  However, 
these systems typically rely on state-of-the-art audio and vision 
techniques that may not be robust enough for real world use.   

Our system overcomes problems of these systems by 
encouraging video viewers to compose video online and 
seamlessly merging manual composition and automatic 
composition.  Similar to professional-operated systems, our 
system can be operated by human.  Unlike professional-operated 
systems, our system hands the view selection task to regular 
viewers who are interested in the topic.  Similar to a fully 
automatic system, our system can automatically compose video 
when no users want to control the system.  Unlike a fully 
automatic system, our system allows convenient manual 
correction of imperfect automatic composition. 

The system uses a hybrid camera, FlySPEC, [6,7] that 
combines the high resolution of a PTZ video camera with the 
wide field of view always available from a panoramic camera 
(Figure 1).  By constructing a high-fidelity video canvas using 

video from the PTZ camera and the panoramic camera, our 
system enables each user to check details of a selected region 
using gestures over the canvas.  Based on users’ requests 
distributed on the canvas, we also design an algorithm for 
maximizing the overall video fidelity with one FlySPEC[7]. 

In this paper, we extended our approach for single FlySPEC 
control to online video composition using multiple FlySPEC 
cameras located at different view points and a video switcher.  
The online video composition system is named MSPEC which 
stands for multiple FlySPECs.  Figure 1 shows the control 
interface of an MSPEC and a FlySPEC camera.  In this interface, 
the three panoramic views come from panoramic cameras of 
three FlySPECs, and the close-up view comes from one selected 
FlySPEC camera.  Similar to the single FlySPEC control, the 
MSPEC system also needs to move every PTZ camera to the 
right pose.  Unlike the single FlySPEC control, the MSPEC can 
select the best output video stream from multiple FlySPEC 
streams.  This design gives the system more chances to output 
better streams when one FlySPEC is not enough to handle the 
capturing task well. 

With the MSPEC system, a user can compose a close-up 
view video stream by selecting a rectangular region in one of the 
panoramic views from time to time.  When our video server 
receives the selection information, the server will send the user a 
close-up video stream according to the request.  This close-up 
video may come from a PTZ camera, a panoramic camera, an 
image cache, or a mixture of all these sources depending on our 
video composition strategy and all users’ requests.  When users 
don’t, won’t, or can’t provide their region selections, our 
algorithm can automate the best video stream selection based on 
users’ past selection patterns.  The automatic composition and 
users’ manual composition are seamlessly integrated into the 
system to support a range of options from untended automatic to 
full manual composition.  In the following paper, we present our 

Figure 1.  The control interface of a MSPEC and one of 
FlySPEC cameras. 
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online video composition framework and some video 
composition experiments.  
 

2. ONLINE VIDEO COMPOSITION 
 
The goal of video composition is to acquire as much required 
information as possible for viewers with limited video channels.  
This goal can be formulated as a video quality maximization 
problem.  In this formulation, we use the video reaching each 
FlySPEC camera as the best quality video which has infinite 
spatial and temporal resolution.  Let ),,( tyxf  be the ideal video, 
where x and y are panoramic image canvas coordinates and t 
denotes time.  Due to limited resolution of imaging sensors, a 

FlySPEC camera may only obtain an approximation ),,(ˆ tyxf of 

the ideal signal ),,( tyxf .  Various regions of ),,(ˆ tyxf  are 
transmitted to viewers according to their requests.  To improve 

the video quality for each viewer, we have to improve ),,(ˆ tyxf  
estimation to reduce the difference between the displayed videos 
and the ideal video. 

With the current MSPEC system, there are two ways to 
improve video quality for viewers.  First, the system can change 

the PTZ camera pose to improve ),,(ˆ tyxf  estimation.  Second, 

the system can use a buffered high quality image, Ttf −
ˆ , to 

substitute for ),,(ˆ tyxf  when some image regions do not change 
over a short time period T between consecutive video frames. 

Denote }{ iR as a set of non-overlapping small regions, N as 

the total number of requests, and )|,( OtRp i  as the probability 

of viewing region-Ri details conditioned on environmental 
observation O at time t (e.g. the probability of viewing region-Ri 
when skin-color, body shape etc. appear in that region.)  The 

total weighted distortion ],ˆ[ tTt ffD −  between users’ requested 

images and the real image can be estimated with: 

∫∑ −−⋅⋅≈
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Since all cameras have limited resolutions, ),,(ˆ tyxf  is typically 

modeled as a band limited representation of ),,( tyxf  with 
cutoff frequency determined by the resolution of a camera.  Let 

),( tF xyω  and ),(ˆ tF xyω  be the spectrum representation of 

),,( tyxf and ),,(ˆ tyxf  respectively, where xyω  is the rotational 

spatial-frequency.  The band limited model 

assumes ),(),(ˆ tFtF xyxy ωω = below certain spatial-frequency 

a(t) and 0),(ˆ =tF xyω above the frequency.  

Let tMF , be ),(),( TtFtF xyxy −− ωω and tSF ,  be 

),(ˆ),( tFtF xyxy ωω − , the above integration may be estimated 

with: 
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This integration reflects the distortion between the real 
image and the cached image, where the first term on the right 
side reflects the distortion caused by environmental changes, and 
the second term reflects the distortion caused by environmental 
details missed because of the limited resolution of the cached 
image.  By sampling region Ri at frequency )(tai  and updating 

the cached image, the expected distortion reduction is: 
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In our system, the sampling frequency of a region is directly 
related to the camera zoom level at that region.  Therefore, the 
above distortion can be adjusted by changing the camera zoom 
level associated with region Ri. With equation 1-3, the total 
distortion reduction (information gain) over all requested images 
is proportional to: 

iR
i

i DOtRpD ∆⋅≈∆ ∑ )|,( .     (4) 

To improve video quality, the control strategy of our system 
is to maximize the distortion reduction D∆  by using proper 
cameras (i.e. the PTZ camera, the panoramic camera, or no-
updating) to update the cached image.  Denote (P,T,Z), 
corresponding to pan/tilt/zoom, as the best pose for the PTZ 
camera.  (P,T,Z) can be obtained with 

( )DZTP
ztp

∆=
),,(

maxarg),,( ,      (5) 

where (P,T) decides the location of the updated regions and Z 
decides the sampling frequency of those updated regions. 

With above control equations, the system can move each 
PTZ camera to form a very high-resolution image for future 
requests when the environment is static.  In a dynamic 
environment, the algorithm will guide the PTZ camera to follow 
moving objects that interest most viewers. 
 Denote q as a PTZ camera id number, Q as the best PTZ 
camera for the zoom view in the above interface, and 

qDMAX∆ as the maximum distortion reduction of camera q.  Q 

can be obtained with 
( )q

q
DMAXQ ∆= maxarg .      (6) 

Our system sends Q to the video switcher for selecting the 
best output video stream. 
 
2.1 Estimating the Distortion Reduction from an Image 

Cache Update 

Since the system cannot try all PTZ camera poses in practice, it 
has to seek the optimal camera pose via simulation before 
moving each PTZ camera.  More specifically, the system has to 
try the distortion reduction equations (3) and (4) with sampling 
regions and cutoff frequencies corresponding to various camera 
poses, and select the optimal camera pose based on equation (5). 

During computer simulation, accurate estimation of 
equation (3) is difficult without sufficient camera resolution.  To 
compensate for this problem, we use Dong and Atick’s  
image/video power spectrum models [3] to assist the evaluation 



of dstortion reduction corresponding to various poses.  
According to these models, if a system captures object 
movements from distance zero to infinity, 2

, ||
iRSF  and 2

, ||
iRMF  

statistically fall with spatial frequency, ωxy, according to m
xyω/1  

and 1/1 −m
xyω  respectively, where m is around 2.3. 

Based on these simple models and available images, the 
estimation of each distortion term may vary.  Due to space limit, 
we only give the estimation procedure of a typical case.  More 
specifically, we assume that only the panoramic videos are 
available for the estimation.  Let b be the spatial cutoff frequency 
of a panoramic video.  Since the panoramic video is available for 
cache update at any time, b cannot be larger than the spatial 
cutoff frequencies of cached images.  In other words, we have 

)(tab i≤ , and )( Ttab i −≤ .  Let Es,i,t be the Ri-region AC-

power between spatial frequency 1 and b, Em,i,t be the Ri-region 
frame-difference AC-power between spatial frequency 1 and b, 
Jm,i,t be the Ri-region frame-difference power up to spatial 

frequency b, and ),,(ˆ tyxfb  acquired by the panoramic camera 

be a band-limited representation of ),,( tyxf .  Jm,i,t can be 

estimated with: 

dxdyTtyxftyxfJ
iR

bbtim

2
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Es,i,t, Em,i,t can be estimated in a similar way.  With these values, 
terms for 

iRcD ,∆  may be obtained with: 
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2.2 Weighting Distortions According to Users’ 

Requests 

To compute the distortion of all requests, users’ requests to 
different portions of an image are modeled with a probability 
function )|( ORp it .  This gives rise to the form of a Bayes 

estimator.  )|( ORp it  may be estimated directly based on users’ 

requests.  Assume N is the total number of requests and ni users 
request the view of region Ri during the time period from t to t+T 
when the observation O is presented, and p and O do not change 
much during this short period, )|( ORp it  may be estimated with: 

N

n
ORp i

it =)|( .       (9) 

 

2.3 Automate Video Composition without Users’ 

Requests 

When users’ requests are not available, the estimation of 
)|( ORp it may become a problem.  This problem may be tackled 

by using the system’s history of users’ requests.  More 

specifically, if we assume that the probability of selecting a 
region does not depend on time t, the probability may be 
estimated with 
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In a tele-conferencing environment, it is reasonable to 
assume that signals from different sources (i.e. objects), such as 
a presenter or an audience member, are independent.  It is also 
reasonable to assume that a human’s view selection separates 
various sources well into two categories (i.e. proper 
segmentation).  Based on these assumptions, the feature vector O 
may be separated into independent feature vectors Oi and Oother, 
where Oi is the feature vector based on the data in Ri and Oother is 
the feature vector based on the data outside of Ri.  Moreover, we 
can further assume that Ri and Oother are independent.  With these 
assumptions, )|( ORp i may be estimated with 
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The observation Oi may be further separated into 
‘independent’ features { }ni oooO ,,, 21 K=  as [1, 10] suggested.  

With these independent features, )|( ORp i may be estimated 

with 
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where )( iRp is the prior probability of selecting region Ri, and 

)|( ij Rop is the probability of observing oj in Ri when Ri is 

selected.  Probabilities on the right side of this equation may be 
‘learned’ online.  With the )|( ORp i  estimate available, it is 

straightforward to compute equation (5) for the optimal PTZ 
camera pose.  This enables the system to automate video 
composition based on users’ past selection patterns.   
 

3. VIDEO COMPOSITION EXPERIMENTS 
 
In our corporate conference room, we captured 56 meeting 
segments with three synchronized panoramic video cameras 
during 14 presentations.  Then we asked 19 subjects to mark 
each meeting segment, which includes 3 synchronized video 
segments captured by different panoramic video cameras, with a 
rectangular region that s/he wants to watch in a close-up view.    
After getting inputs from these subjects, we used data 
corresponding to 30 meeting segments as training data to 
estimate )|( iROp  and )( iRp .  The estimate of )( iRp is 

shown in Figure 2, where whiter points correspond to higher 
)( iRp  values.  

We tested our camera control algorithm with 26 other 
meeting segments.  Figure 3 (a) shows a snapshot of a meeting 
segment using three panoramic views.  If remote viewers can 
only watch one close-up stream and they do not send their 
requests for this meeting segment, our system will automatically 
choose the dotted black box shown in Figure 3 (a) as the PTZ 



camera view.  The optimal PTZ camera view selection is 
illustrated in Figure 3 (b), which shows the maximum distortion 
reductions corresponding to various PTZ cameras at various 
zoom levels.  It also shows the maximum distortion reduction of 
using all three cameras.  The horizontal axis of Figure 3 (b) 
reflects the spatial frequency associated with various zoom levels.  
The unit of this axis is based on the spatial frequency of a 
panoramic image.  Since we cut the image canvas into small 
regions for fast optimization, the zoom level corresponds to a set 
of discrete values, and the best camera pose for that zoom level 
is computed.  The optimal PTZ camera view, which is marked 
with the dotted black box in Figure 3 (a), corresponds to the 
highest distortion reduction point in Figure 3 (b). 

 

 
Figure 4 shows the distortion statistics based on different 

PTZ camera control strategies.  Figure 4 (a) reflects the visual 
distortion distribution when PTZ cameras are used for smallest 
field-of-view requests.  Figure 4 (b) reflects the visual distortion 
distribution when PTZ cameras are controlled using our 
algorithm.  Compared with Figure 4 (a), the peak shift in Figure 
4 (b) reveals obvious user’s view improvement come from using 
our control strategy.  In this experiment, a system using our 
control strategy have 38% less distortion than a system using 
PTZ cameras for smallest field-of-view requests, and 51% less 
distortion than a system using no PTZ camera. 

 
4. CONCLUSIONS 

 
We investigated the video composition problem within a signal 
distortion optimization framework.  The composition strategy 
developed in this paper aligns well with many well-known 
composition rules.  It also helped us to understand some 
problems overlooked by empirical approaches.  Online video 
composition experiments based on our formulation further 
convinced us of the usefulness of this framework.  Our 
experiments also challenged us with the problems of better 
probability estimation and user satisfaction evaluation.  
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Figure 2.  Estimation of )( iRp (a) A typical meeting shot 

that reveals the conference room arrangements.  (b) 
Users’ preferences to various regions )( iRp . 

(a) (b) 

(a) 

Figure 3.  The maximum distortion reductions 
corresponding to various zoom levels and the best PTZ-
camera pose selection (dotted black box). 

(b) 
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Figure 4.  The distortion statistics based on different PTZ 
camera usages. (a) Use PTZ cameras for smallest field-of-
view requests.  (b) Control using our algorithm. 
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