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1.  ABSTRACT
This paper presents a novel approach to visual-
izing the time structure of music and audio. The
acoustic similarity between any two instants of
an audio recording is calculated and displayed
as a two-dimensional representation. Similar or
repeating elements are visually distinct, allow-
ing identification of structural and rhythmic
characteristics. Visualization examples are pre-
sented for orchestral, jazz, and popular music.
Applications include content-based analysis
and segmentation, as well as tempo and struc-
ture extraction.

1.1  Keywords
music visualization, audio analysis, audio similarity
measure

2.  INTRODUCTION
There has been considerable interest in making music
visible. Efforts include artistic attempts to realize
images elicited by sound, of which the Walt Disney
film Fantasia is perhaps the canonical example.
Another approach is to quantitatively render the time
and/or frequency content of the audio signal, using
methods such as the oscillograph and sound
spectrograph [1], [2]. These attempts are primarily for
scientific or quantitative analysis, (though it should be
noted that the work of artists like Mary Ellen Bute [3]
use quantitative methods such as the cathode ray
oscilloscope towards artistic ends). Other
visualizations are derived from note-based or score-
like representation of music, typically from MIDI note
events [4],[5]. 

Music is generally self-similar. With the possible

exception of a few avant-garde compositions, structure
and repetition is a general feature of nearly all music.
That is, the coda often resembles the introduction, the
second chorus sounds like the first, and a theme is more
or less similar to its variations. On a shorter time scale,
successive bars are often repetitive, especially in
popular music. This paper presents a novel method of
visualizing the structure of music by its acoustic
similarity or dissimilarity in time, rather than absolute
acoustic characteristics or note events. Self-similarity
is visualized in a two-dimensional representation of
time. This paper presents methods1 of displaying the
acoustic self-similarity of an audio file as an image like
Figure 1.

These images graphically depict the similarity between
two time regions in an audio file. An audio file is
represented as a square. Each side of the square is
proportional to the length of the piece, and time runs

1 This work was done at the Institute of Systems Science (now
KRDL), affiliated with the National University of Singapore.

Figure 1.  Self-similarity visualization of drum pattern
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from left to right as well as from bottom to top. In the
Figures, both axes are labeled with time in seconds.
Thus the bottom left corner of the square corresponds
to the beginning of the piece, while the top right
corresponds to the end. In the square, the brightness of
a point  is proportional to the audio similarity at
times i and j. Similar regions are bright while
dissimilar regions are dark. Thus there is always a
bright diagonal line running from bottom left to top
right, because the audio is always the most similar to
itself at any particular time. (Technically, the
autocorrelation is always a maximum at a lag of zero.)
In this visualization, regions of self-similarity appear
as bright regions off the diagonal, as in Figure 1.
Relatively novel regions appear as dark squares.
Repetitive similarity, such as repeating notes or motifs,
show up as a checkerboard pattern. Long repeated
themes are visible as diagonal lines parallel to and
separated from the main diagonal by the time
difference between repetitions. 

3.  Similarity Analysis
To understand a visualization like Figure 1, it helps to
know how it is constructed. Consider the bottom row
of pixels (or the left column; images are symmetric).
This is colored by how similar the first instant of the
piece is to the rest. (For the visualizations here, an
“instant” is about 1/10 of a second). Thus the bottom
row’s halfway point is colored proportionally to the

similarity between the first instant and an insta
halfway through, and so forth. As we consider row
progressively higher above the bottom row, w
consider instants progressively further into the pie
and compare them with the audio from start to fini
across the row.

3.1  Audio parameterization
To calculate the similarity between two audi
“instants,” they are first parameterized into Me
frequency cepstral coefficients (MFCCs) plus a
energy term. Figure 2 shows the steps 
parameterizing an audio waveform.

First, the audio is Hamming-windowed in overlappin
steps. Each window is 25 mS wide and are overlapp
so there are 100 windows, hence feature vectors, 
second of audio. The window width and overlap c
be fine-tuned to optimize the visualizations, but th
above values offer good results for most audio and 
used in the examples. For each window, the log of 
power spectrum is computed using a discrete Fou
transform (DFT). The log spectral coefficients a
perceptually weighted by a non-linear map of th
frequency scale. This operation, called Mel-scalin
emphasizes mid-frequency bands in proportion to th
perceptual importance. The final stage is to furth
transform the Mel-weighted spectrum (using anoth
DFT) into “cepstral” coefficients. This results in
features that are reasonably dimensiona
uncorrelated, thus the final DFT is a goo
approximation of the Karhunen-Loeve transformatio
of the Mel spectra. The high-order MFC coefficien
are discarded, leaving the 12 lower-order MFCCs. T
audio waveform is thus transformed into 13
dimensional feature vectors (12 MFC coefficients pl
energy) at a 100 Hz rate.

The MFCC parameterization was originally develop
for speech recognition applications, and h
continually out-performed nearly all othe
parameterization methods. Other parameterizatio
such as spectral or Perceptual Linear Predictive (P
parameters could be used, but MFCCs result in 
generally good images shown in the examples 
Section 4. MFCCs have been demonstrated to w
for music retrieval by similarity [6]. Furthermore
MFCCs have been shown to be better than spec
pitch, and zero-crossing measures for discriminat
between speech and music [7]. It can be objected 
using MFCCs for music analysis (as opposed 
speech) is “the wrong thing to do.” This objectio
stems from the understanding that the MFC
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Figure 2.  Acoustic processing for similarity measure
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parameterization discards pitch information. It one
sense it does this—the high-order MFCCs contain the
fine harmonic structure characteristic of the driving
function—but this is precisely why the MFCCs are
appropriate for measuring audio similarity. A better
way to characterize the MFCC transformation is as a
lowpass “lifter” or frequency-domain filter. In this
view, MFCCs are a smoothed representation of a
sound’s frequency spectrum. A single pitch in the
MFCC domain is represented by roughly the envelope
of the harmonics, not the harmonics themselves. Thus
MFCCs will tend to match similar timbres rather than
exact pitches; though single-pitched sounds will match
if they are present. Having said this, it is clear from the
examples of Section 4 that there may be better
representations; in particular, high prominent notes
appear to generate a higher similarity measure than
other subjectively similar audio. Clearly, work is
needed on investigating parameterizations, similarity
measures, and the effect of window size on the
visualizations.

3.2  Similarity Measure
The similarity measure used here is based on vector
autocorrelation. Given two MFCC feature vectors 

and  derived from audio windows1 i and j, a simple
metric of vector similarity s is the scalar (dot) product
of the vectors

This will be large if the vectors are both large and
similarly oriented. Because windows, hence feature
vectors, occur at a rate much faster than typical
musical events, a better similarity measure S can be
obtained by computing the vector correlation over a
window w. Thus

This also captures the time dependence of the vectors.
To result in a high similarity score, vectors in a

1 As feature vectors come from discrete windows, we use
discrete time indexes throughout this discussion.

window must not only be similar but their sequen
must be similar as well. Considering a on
dimensional example, the scalar sequence (1, 2, 3
5) has a much higher similarity score with itself tha
with the sequence (5, 4, 3, 2, 1). This equation ser
as the similarity metric used for the images this pap

3.3  Visualization Method
To visualize an audio file, a window with w is chosen,
and the similarity measure S(i,j) is calculated for all
window combinations, hence time indexes i and j.
Then an image is constructed so that each pixe
location i, j is given a grayscale value proportional 
the similarity measure, by scaling the similarity valu
such that the maximum value is given the maximu
brightness. Because of the rapid rate of feature vect
it is quite possible that a long audio files will result 
impracticably large images (a one minute file at
resolution of 100 vectors per second results in a 600x
6000-pixel image). To reduce the image size, t
similarity can be averaged over short intervals, or t
similarity calculated only for certain time indexes. Th
latter approach is taken here. Because S is already
calculated over a window of size w, looking only at
indexes that are an integer multiple of w reduces the
image size by a that factor. Depending on the length
the audio, the examples of Section use w in the range
of 5 to 10.These visualizations let us clearly see 
structure of an audio file. Regions of high aud
similarity, such as silence or long sustained not
appear as bright squares on the diagonal. Repe
figures, such as themes, phrases, or choruses, wil
visible as bright off-diagonal rectangles. If the mus
has a high degree of repetition, this will be visible 
diagonal stripes or checkerboards, offset from t
main diagonal by the repetition time. Below are som
examples; the time scales are seconds. For reason
resolution and space most images are from sm
excerpts of longer works. 

3.4  “Drum Solo” Example
Figure 1 is a sampled “drum solo” taken from an aud
test CD. The different drums are visually distinct. Th
solo starts with a snare drum roll, followed by 
syncopated alternation of kick and snare hits a
cymbal accents. Figure 3 zooms in to the first t
seconds. With the higher time resolution, th
individual snare hits in the beginning roll are visibl
The alternation of instruments is particularly visible 
this Figure. For example, the 2 x 2 “checkerboar
between the second and third seconds of the record
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is a snare drum hit followed by a kick drum hit. This
sequence is reversed (kick, then snare) between
seconds 3 and 4. To clarify the visualization, stripes
marked “snare,” “cymbal,” and “kick” have been
indicated on the Figure. These rows indicate the time
similarity of the audio to the indicated instruments
because they are the autocorrelations with reference
windows containing the respective instruments. For
example, the stripe marked “snare” starts brightly,
because the audio starts with a snare roll. The different
instruments can be clearly distinguished. Of course it
helps that they are spectrally very different; it is
generally more difficult to differentiate between
instruments of similar range and timbre, for example a
flute and a clarinet. 

Figure 4 shows the autocorrelation stripes as a more
conventional plot. Looking at Figure 4, it is clear that a
simple maximum would do a very good job at both

segmenting the audio and classifying the differe
drum hits Because both instrument and timin
information could be automatically derived from th
plot, this information could be used to generate
MIDI representation of the source music, which is 
general a very difficult problem for unpitched
instruments. This plot highlights features that are n
so apparent in Figure 3; for example the kick-dru
syncopation clearly visible at 7 seconds. No
particularly the way the high-hat (cymbal) accents a
visible at 4 and 7 seconds.

4.  More Examples
This section presents additional visualizations acros
variety of musical genres. The Electronic Version 
this paper includes the playable source audio as we
full-color versions of the annotated visualizations.

4.1  Bach Prelude 
Figure 6 shows the first seconds of Bach’s Prelude No. 1 in
C Major, from The Well-Tempered Clavier, BVW 846. This
lovely 1924 piano performance is by Ferruccio
Busoni. The image is fuzzy due to the extremely poor
audio quality of the 1924 recording. (Indeed,
conventional audio analysis techniques would make
little headway due to the poor bandwidth and
extremely high noise level of this audio). The
striations at the very beginning are clicks and pops due
to surface noise from the 78 RPM recording. The
visualization makes both the structure of the piece and
details of performance visible. For an example of the

Figure 3.  Self-similarity visualization of drum pattern

Figure 4.  Graph of autocorrelation vs. time

Figure 5.  First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier
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latter, note the slow first notes and the gradual
accelerando (speedup) as the checkerboard patterns
get closer together. The musical structure is clear from
the repetitive motifs; multiples of the repetition time
can be seen in the off-diagonal stripes parallel to the
main diagonal. Figure 6 shows the first few bars of the
score: the repetitive nature of the piece should be clear
even to those unfamiliar with musical notation. 

4.2  Brubeck’s Take 5
Figure 7 shows the beginning of the Dave Brubeck
composition Take 5 as performed by the Dave Brubeck
Quartet. The eponymous 5/4 time signature is visible
as a 3-2 subdivision, particularly in the lower left
corner. The especially bright regions are due to high
notes from the alto saxophone.

5.  Mozart’s Horn Concerto
Figure 8 shows the start of the Rondo movement from
W. A. Mozart’s Horn Concerto No. 4. The statement of
the theme by the horn and tutti restatement by the
ensemble are visible in the lower left. While the two
statements are melodically identical, they appear
dissimilar because of the different timbres. The
sustained high horn note causes the bright quartet near
the 20-second mark.

5.1  Day Tripper by the Beatles. 
Figure 9 shows the entire song Day Tripper by the

Beatles. The image has been annotated to show the
canonical pop song structure, which is: intro verse,
chorus, second verse, chorus, bridge, third verse and
chorus, coda, and “outro.” Vocals in the first verse st

Figure 6.  Visualization of Bach’s Prelude No. 1 Figure 7.  Take 5 by the Dave Brubeck Quartet

Figure 8.  Rondo from Mozart’s Horn Concerto No. 4
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at about 18 seconds; the 4 vocal phrases (“Got a good
reason/For taking the easy way out.”) can be seen
echoed in the second verse (“She's a big teaser...”)
about 20 seconds later. The chorus (“She was a day
tripper”) starts at about 30 seconds; the prominent
feature at 40 seconds is the sustained “so” (“it took me
so long/to find out”) which is recapitulated halfway
through the second verse at 75 seconds. Note that the
“so” of the third chorus (130 seconds) is not similar to
the preceding choruses; it is sung in falsetto,
approximately an octave plus a minor third higher than

the first two. The first half of the bridge is instrument
while the second contains background vocals (“ah
the last half can be seen to be similar to first a
second “so’s” from the chorus. The repetitive 11-no
guitar/bass riff is particularly clear in both th
introduction and its note-for-note recapitulation in th
coda, and is also visible in the verses and outro, wh
fades out. The bar-by-bar and section-by-sect
periodicity are evident in the diagonal lines prevale
throughout the image.

Figure 9.  Day Tripper by Lennon/McCartney, performed by the Beatles
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6.  Applications of Visualization Techniques
This technique should aid musicological analysis.
Having visual representations of, for example, two
different performances of the same symphonic
movement would allow comparisons of tempo and
emphasis in the two realizations. The grayscale
visualizations could be colored to add another variable
dimension; for example, using a colormap to indicate
relative volume, so that, for example, fortissimo
passages are colored reddish while softer passages
vary down the spectrum to a blue pianissimo.
Differences in both dynamics and tempo would then
be clearly visible.

6.1  Retrieval by similarity
These visualizations show how acoustically similar
passages can be located in an audio recording.
similarity can also be found across recordings as well
as within a single recording. As an immediate
application, this would be useful wherever known
music or audio needs to be located in a longer file. For
example, it would be a simple matter to find the
locations of the theme music in a news broadcast, or
the times that advertisements occur in a TV broadcast
if the audio was previously available. In this case, the
similarity measure would be computed between all
frames of the source commercial and the TV
broadcast, resulting in a rectangular similarity matrix.
Commercial onset times could be determined by
thresholding the similarity matrix at some suitable
value.

The structure of most music is sufficient to
characterize the work. As proof by example, human
experts can identify music and sound by visual
structure alone. Victor Zue of MIT teaches a course in
“reading” sound spectrographs. In a double-blind test,
Arthur G. Lintgen of Philadelphia was able to
distinguish unlabeled classical recordings by
identifying the softer and louder passages visible in the
LP grooves [8]. These examples indicate that the
visualization method presented here might be useful
for music retrieval by similarity. Not only can
acoustically similar audio be located, but structurally
similar audio should be straightforward to find, by
comparing similarity visualizations. For example,
different performances of the same symphonic
movement should have a similar structural
visualization regardless of how or when they were
performed or recorded, or indeed the instruments used.

6.2  Structure/Tempo extraction
This last point emphasizes a particularly promising
application of the similarity measure. Because self-
similarity is being determined rather than any

particular audio characteristic, important informatio
can be automatically derived from a the similari
measure. This can be particularly useful; as discus
for Figure 4, it would be possible to generate a MID
representation from an audio source, even in 
absence of pitch information. A very attractiv
possibility is the automatic determination of temp
Given the audio of a particular performance and
MIDI file representation of the same piece, it would b
possible to warp the similarity matrix from the known
tempo MIDI rendition to match that of the origina
performance. The warping function would then ser
as a tempo map, allowing the MIDI file to be playe
back with the tempo of the original performance. Th
might be particularly useful for archival performance
such as the Bach piece of Section 4.1.
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