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1. ABSTRACT

This paper presents a novel approach to visual-
izing thetime structure of music and audio. The
acoustic similarity between any two instants of
an audio recording is calculated and displayed
as atwo-dimensional representation. Similar or
repeating elements are visually distinct, allow-
ing identification of structural and rhythmic
characteristics. Visualization examples are pre-
sented for orchestral, jazz, and popular music.
Applications include content-based analysis
and segmentation, as well as tempo and struc-
ture extraction.

1.1 Keywords
music visuaization, audio analysis, audio similarity
measure

2. INTRODUCTION

There has been considerable interest in making music
visible. Efforts include artistic attempts to realize
images dlicited by sound, of which the Walt Disney
film Fantasia is perhaps the canonical example.
Another approach is to quantitatively render the time
and/or frequency content of the audio signal, using
methods such as the oscillograph and sound
spectrograph [1], [2]. These attempts are primarily for
scientific or quantitative analysis, (though it should be
noted that the work of artists like Mary Ellen Bute [3]
use quantitative methods such as the cathode ray
oscilloscope  towards  artistic  ends).  Other
visualizations are derived from note-based or score-
like representation of music, typically from MIDI note
events[4],[5].

Music is generaly sdf-similar. With the possible

Figure 1. Self-similarity visualization of drum pattern

exception of afew avant-garde compositions, structure
and repetition is a genera feature of nearly all music.
That is, the coda often resembles the introduction, the
second chorus sounds like thefirst, and athemeismore
or less similar to its variations. On a shorter time scale,
successive bars are often repetitive, especially in
popular music. This paper presents a novel method of
visualizing the structure of music by its acoustic
similarity or dissimilarity in time, rather than absolute
acoustic characteristics or note events. Self-similarity
is visualized in a two-dimensiona representation of
time. This paper presents methods® of displaying the
acoustic self-similarity of an audio file as an image like
Figure 1.

These images graphically depict the similarity between
two time regions in an audio file. An audio file is
represented as a sguare. Each side of the square is
proportional to the length of the piece, and time runs

1 This work was done at the Ingtitute of Systems Science (now
KRDL), affiliated with the National University of Singapore.
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Figure 2. Acoustic processing for similarity measure

from left to right as well as from bottom to top. In the
Figures, both axes are labeled with time in seconds.
Thus the bottom left corner of the square corresponds
to the beginning of the piece, while the top right
corresponds to the end. In the square, the brightness of
a point (i,j) is proportional to the audio similarity at
times i and j. Similar regions are bright while
dissimilar regions are dark. Thus there is aways a
bright diagonal line running from bottom left to top
right, because the audio is always the most similar to
itsdlf a any particular time. (Technically, the
autocorrelation is always a maximum at alag of zero.)
In this visualization, regions of self-similarity appear
as bright regions off the diagonal, as in Figure 1.
Relatively novel regions appear as dark squares.
Repetitive similarity, such as repeating notes or motifs,
show up as a checkerboard pattern. Long repeated
themes are visible as diagona lines parallel to and
separated from the main diagonal by the time
difference between repetitions.

3. Similarity Analysis

To understand a visualization like Figure 1, it helps to
know how it is constructed. Consider the bottom row
of pixels (or the left column; images are symmetric).
This is colored by how similar the first instant of the
piece is to the rest. (For the visualizations here, an

similarity between the first instant and an instant
halfway through, and so forth. As we consider rows
progressively higher above the bottom row, we
consider instants progressively further into the piece,
and compare them with the audio from start to finish
across the row.

3.1 Audio parameterization

To calculate the similarity between two audio
“instants,” they are first parameterized into Mel-
frequency cepstral coefficients (MFCCs) plus an
energy term. Figure 2 shows the steps in
parameterizing an audio waveform.

First, the audio is Hamming-windowed in overlapping
steps. Each window is 25 mS wide and are overlapped
so there are 100 windows, hence feature vectors, in a
second of audio. The window width and overlap can
be fine-tuned to optimize the visualizations, but the
above values offer good results for most audio and are
used in the examples. For each window, the log of the
power spectrum is computed using a discrete Fourier
transform (DFT). The log spectral coefficients are
perceptually weighted by a non-linear map of the
frequency scale. This operation, called Mel-scaling,
emphasizes mid-frequency bands in proportion to their
perceptual importance. The final stage is to further
transform the Mel-weighted spectrum (using another
DFT) into “cepstral” coefficients. This results in
features that are reasonably dimensionally
uncorrelated, thus the final DFT is a good
approximation of the Karhunen-Loeve transformation
of the Mel spectra. The high-order MFC coefficients
are discarded, leaving the 12 lower-order MFCCs. The
audio waveform is thus transformed into 13-
dimensional feature vectors (12 MFC coefficients plus
energy) at a 100 Hz rate.

The MFCC parameterization was originally developed
for speech recognition applications, and has
continually  out-performed nearly all other
parameterization methods. Other parameterizations
such as spectral or Perceptual Linear Predictive (PLP)
parameters could be used, but MFCCs result in the
generally good images shown in the examples of
Section 4. MFCCs have been demonstrated to work
for music retrieval by similarity [6]. Furthermore,
MFCCs have been shown to be better than spectral,
pitch, and zero-crossing measures for discriminating
between speech and music [7]. It can be objected that

“instant” is about 1/10 of a second). Thus the bottomYSing MFCCs for music analysis (as opposed to

row’s halfway point is colored proportionally to the

speech) is “the wrong thing to do.” This objection
stems from the understanding that the MFCC



parameterization discards pitch information. It one window must not only be similar but their sequence
sense it does this—the high-order MFCCs contain the must be similar as well. Considering a one-
fine harmonic structure characteristic of the driving dimensional example, the scalar sequence (1, 2, 3, 4,
function—but this is precisely why the MFCCs are 5) has a much higher similarity score with itself than
appropriate for measuring audio similarity. A better with the sequence (5, 4, 3, 2, 1). This equation serves
way to characterize the MFCC transformation is as aas the similarity metric used for the images this paper.
lowpass “lifter” or frequency-domain filter. In this . .

view, MFCCs are a smoothed representation of a>-5 Visualization Method m
sound’s frequency spectrum. A single pitch in the T0 Visualize an audio file, a window withis chosen,
MFCC domain is represented by roughly the envelopeand the similarity measurg(i,j) is calculated for all

of the harmonics, not the harmonics themselves. Thugvindow combinations, hence time indexesnd |.
MFCCs will tend to match similar timbres rather than 1h€n an image is constructed so that each pixel at
exact pitches: though single-pitched sounds will match!0cationi, j is given a grayscale value proportional to

if they are present. Having said this, it is clear from the the similarity measure, by scaling the similarity values
examples of Section 4 that there may be betterSU_Ch that the maximum value_ is given the maximum
representations; in particular, high prominent notesPrightness. Because of the rapid rate of feature vectors,
appear to generate a higher similarity measure thart is quite possible that a long audio f|Ie_s will rgsult in
other subjectively similar audio. Clearly, work is Mmpracticably large images (a one minute file at a
needed on investigating parameterizations, similarity€Solution of 100 vectors per second results in a €000
measures, and the effect of window size on the6000-pixel image). To reduce the image size, the

visualizations. similarity can be averaged over short intervals, or the
o similarity calculated only for certain time indexes. The
3.2 Similarity Measure latter approach is taken here. Beca&ses already

The similarity measure used here is based on vectocalculated over a window of size looking only at
autocorrelation. Given two MFCC feature vectoys  indexes that are an integer multiplevofreduces the

andv; derived from audio windows andj, a simple image size by a that factor. Depending on the length of

metric of vector similaritys is the scalar (dot) product the audio, the examples of Section us@ the range
of the vectors ¥ P of 5 to 10.These visualizations let us clearly see the

structure of an audio file. Regions of high audio

similarity, such as silence or long sustained notes,
s(i,j) =V, e v appear as bright squares on the diagonal. Repeated

figures, such as themes, phrases, or choruses, will be

visible as bright off-diagonal rectangles. If the music
This will be large if the vectors are both large and has a high degree of repetition, this will be visible as
similarly oriented. Because windows, hence featurediagonal stripes or checkerboards, offset from the
vectors, occur at a rate much faster than typicalmain diagonal by the repetition time. Below are some
musical events, a better similarity meas@rean be  examples; the time scales are seconds. For reasons of
obtained by computing the vector correlation over aresolution and space most images are from small
windoww. Thus excerpts of longer works.

3.4 “Drum Solo” Example
1""‘1 Figure 1 is a sampled “drum solo” taken from an audio
SHINDER Z (Vipi® Vi, k) test CD. The different drums are visually distinct. The
W .

K=0 solo starts with a snare drum roll, followed by a
syncopated alternation of kick and snare hits and
cymbal accents. Figure 3 zooms in to the first ten

This also captures the time dependence of the vectorseconds. With the higher time resolution, the
To result in a high similarity score, vectors in a individual snare hits in the beginning roll are visible.
The alternation of instruments is particularly visible in
this Figure. For example, the 2 x 2 “checkerboard”
between the second and third seconds of the recording

1 As feature vectors come from discrete windows, we use
discrete time indexes throughout this discussion.



autocorrelation

Figure 4. Graph of autocorrelation vs. time

segmenting the audio and classifying the different
drum hits Because both instrument and timing
information could be automatically derived from the
plot, this information could be used to generate a
MIDI representation of the source music, which is in
general a very difficult problem for unpitched

instruments. This plot highlights features that are not
so apparent in Figure 3; for example the kick-drum
syncopation clearly visible at 7 seconds. Note
particularly the way the high-hat (cymbal) accents are
visible at 4 and 7 seconds.

Figure 3. Self-similarity visualization of drum pattern

is a snare drum hit followed by a kick drum hit. This 4. More Examples

sequence is reversed (kick, then snare) between This section presents additional visualizations across a
seconds 3 and 4. To clarify the visudization, Slipes  yariety of musical genres. The Electronic Version of
marked “snare,” “cymbal,” and “kick” have been this paper includes the playable source audio as well as

indicated on the Figure. These rows indicate the timefy||-color versions of the annotated visualizations.
similarity of the audio to the indicated instruments

because they are the autocorrelations with referencé.1 Bach Prelude
windows containing the respective instruments. ForFigure 6 shows the first secondssath’sPrelude No. 1in
example, the stripe marked “snare” starts brightly, C Major, from The Well-Tempered Clavier, BVW 846. This
because the audio starts with a snare roll. The differentovely 1924 piano performance is by Ferruccio
instruments can be clearly distinguished. Of course itBusoni. The image is fuzzy due to the extremely poor
helps that they are spectrally very different; it is audio quality of the 1924 recording. (Indeed,
generally more difficult to differentiate between conventiona audio analysis techniques would make
instruments of similar range and timbre, for example alittle headway due to the poor bandwidth and
flute and a clarinet. extremely high noise level of this audio). The
, _ . striations at the very beginning are clicks and pops due
Figure 4 shows the autocorrelation stripes as a morg, g rface noise from the 78 RPM recording. The
conventional plot. Looking at Figure 4, it is clear that a \jg,3)i zation makes both the structure of the piece and
simple maximum would do a very good job at both yegjs of performance visible. For an example of the
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Figure 5. First bars of Bach’sPrelude No. 1in C Major, BVW 846, from The Well-Tempered Clavier



Figure 6. Visualization of Bach’sPrelude No. 1

latter, note the dow first notes and the gradua
accelerando (speedup) as the checkerboard patterns
get closer together. The musical structure is clear from
the repetitive motifs; multiples of the repetition time
can be seen in the off-diagonal stripes parallel to the
main diagonal. Figure 6 shows the first few bars of the
score: the repetitive nature of the piece should be clear
even to those unfamiliar with musical notation.

4.2 Brubeck'sTake5

Figure 7 shows the beginning of the Dave Brubeck
composition Take 5 as performed by the Dave Brubeck
Quartet. The eponymous 5/4 time signature is visible
as a 3-2 subdivision, particularly in the lower left
corner. The especially bright regions are due to high
notes from the alto saxophone.

5. Mozart’s Horn Concerto

Figure 8 shows the start of the Rondo movement from
W. A. Mozart's Horn Concerto No..4 he statement of
the theme by the horn and tutti restatement by the
ensemble are visible in the lower left. While the two
statements are melodically identical, they appear
dissmilar because of the different timbres. The
sustained high horn note causes the bright quartet near
the 20-second mark.

5.1 Day Tripper by the Beatles.
Figure 9 shows the entire song Day Tripper by the

Figure 7. Take5 by the Dave Brubeck Quartet

Figure 8. Rondo from Mozart’s Horn Concerto No. 4

Beatles. The image has been annotated to show the
canonical pop song structure, which is. intro verse,
chorus, second verse, chorus, bridge, third verse and
chorus, coda, and “outro.” Vocals in the first verse start
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Figure 9. Day Tripper by Lennon/McCartney, performed by the Beatles

at about 18 seconds; the 4 vocal phrases (“Got a goothe first two. The first half of the bridge is instrumental
reason/For taking the easy way out.”) can be seerwhile the second contains background vocals (“ah”),
echoed in the second verse (“She's a big teaser...”)he last half can be seen to be similar to first and
about 20 seconds later. The chorus (“She was a dagecond “so’s” from the chorus. The repetitive 11-note
tripper”) starts at about 30 seconds; the prominentguitar/bass riff is particularly clear in both the
feature at 40 seconds is the sustained “so” (“it took meintroduction and its note-for-note recapitulation in the
so long/to find out”) which is recapitulated halfway coda, and is also visible in the verses and outro, which
through the second verse at 75 seconds. Note that thiades out. The bar-by-bar and section-by-section
“so” of the third chorus (130 seconds) is not similar to periodicity are evident in the diagonal lines prevalent
the preceding choruses; it is sung in falsetto,throughout the image.

approximately an octave plus a minor third higher than




6. Applications of Visualization Techniques
This technique should aid musicological analysis.
Having visua representations of, for example, two
different performances of the same symphonic
movement would allow comparisons of tempo and
emphasis in the two redizations. The grayscale
visualizations could be colored to add another variable
dimension; for example, using a colormap to indicate
relative volume, so that, for example, fortissmo
passages are colored reddish while softer passages
vary down the spectrum to a blue pianissimo.
Differences in both dynamics and tempo would then
be clearly visible.

6.1 Retrieval by similarity

These visuadlizations show how acoustically similar
passages can be located in an audio recording.
similarity can also be found across recordings as well
as within a single recording. As an immediate
application, this would be useful wherever known
music or audio needsto be located in alonger file. For
example, it would be a smple matter to find the
locations of the theme music in a news broadcast, or
the times that advertisements occur in a TV broadcast
if the audio was previously available. In this case, the
similarity measure would be computed between all
frames of the source commercid and the TV
broadcast, resulting in a rectangular similarity matrix.
Commercial onset times could be determined by
thresholding the similarity matrix at some suitable
value.

The structure of most music is sufficient to
characterize the work. As proof by example, human
experts can identify music and sound by visud
structure alone. Victor Zue of MIT teaches a course in

“reading” sound spectrographs. In a double-blind test,
Arthur G. Lintgen of Philadelphia was able to [

distinguish unlabeled classical recordings

identifying the softer and louder passages visible in the

particular audio characteristic, important information
can be automatically derived from a the similarity
measure. This can be particularly useful; as discussed
for Figure 4, it would be possible to generate a MIDI
representation from an audio source, even in the
absence of pitch information. A very attractive
possibility is the automatic determination of tempo.
Given the audio of a particular performance and a
MIDI file representation of the same piece, it would be
possible to warp the similarity matrix from the known-
tempo MIDI rendition to match that of the original
performance. The warping function would then serve
as a tempo map, allowing the MIDI file to be played
back with the tempo of the original performance. This
might be particularly useful for archival performances
such as the Bach piece of Section 4.1.
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